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Abstract

Modeling interaction among artificial agents is a challenging task. Argumentation, auction,

dialogue games and agent communication languages are proposed as mechanisms to model

agent interaction. Among different mechanisms to model interaction among agents, dialogue

game protocols is most significant. In this thesis I model a dialogue game in defeasible logic.

I have two research goals. First, previous development of dialogue game protocols does not

consider the strategic behaviour of agents. In this thesis I model the strategic behaviour of

agents. Second, as more and more dialogue game protocols are developed there is a need to

compare these protocols so that an appropriate protocol can be chosen for a given problem.

Previous attempts to compare dialogue game protocols are based on functional comparison

of components of a protocol. In this thesis I develop a new semantics for locution. Based on

this semantics, dialogue game protocols can be compared so the protocol that can convey

the right meaning can be identified.
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1
Introduction

1.1 Background

Interactions among agents are modeled as auctions, agent communication language, argu-

mentation and dialogue games. Among these mechanisms, the dialogue game protocol is

the most expressive and promising. A dialogue game is a process where multiple agents

construct proofs for a proposition by taking turn in presenting arguments. A dialogue game

protocol can be based on an argumentation framework, which is a declarative model of in-

teraction. An argumentation framework describes the constructs as arguments, attacks on

arguments by counter arguments and justification of an argument. Argumentation is more

expressive than auction and agent communication language as it allows the challenging of

an argument, and the presenting of a supportive argument so that an agent can have better

understanding of another agent’s internal structure. This improves the possibility of success

1



2 Introduction

of an interaction and may speed up the interaction. Dialogue game describes the ‘process’

of argumentation.

The dialogue game protocols are used in many agent interaction scenarios as follows:

1. Information seeking dialogue game: In this type of dialogue game, an agent seeks to

answer some question [27].

2. Inquiry dialogue game: In this type of dialogue game, agents collaborate to answer

some question [32].

3. Persuasion dialogue game: In this type of dialogue game, an agent tries to persuade

another agent to accept an argument [28], [41], [44].

4. Negotiation dialogue game: In this type of dialogue game, agents argue about share

and trade-off of some resources [21], [31], [48].

5. Deliberation dialogue game: In this type of dialogue game, agents argue about the

course of actions to be undertaken by the agents [18].

6. Coalition formation dialogue game: In this type of dialogue game, agents argue for

coalition formation [24].

[33] has structured dialogue game protocols into components as follows:

1. Commencement rules: Rules for deciding the topic of conversation.

2. Locutions: Legal moves available for dialogue game protocols. For example AS-

SERT{}, Justify{} etc.

3. Combination rules: These rules decide the set of locutions available at a particular

step of the dialogue game.

4. Commitment rules: Commitment rules store the previous promises expressed in pre-

vious utterance by communicating agents.

5. Termination rules: Rules to indicate when to end a conversation.
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[34] argued that, as more and more dialogue game protocols are developed there is a need

to compare these protocols so that we can identify the appropriate protocol at a particular

scenario. [36] has shown how to compare two protocols on the basis of functionality of the

components of dialogue game protocols.

1.1.1 Motivation

First motivation: Lack of strategic behaviour in dialogue game protocols

Previous models of dialogue game protocols provide structures of protocols to be applied

for different situations. But an agent’s strategic behaviour in a dialogue game protocol is

still not modeled. Agents enter the process of a dialogue game with a fixed knowledge base

and a goal to win the game. As dialogue game protocols describe the turn-taking behaviour

of agent’s, winning the game not only depends on agents knowledge bases but also on the

‘timing’ and proper use of knowledge. Proper timing of an argument means the appropriate

time of introduction of an argument into the process of the dialogue game. An agent’s

knowledge base will contain arguments those will support or oppose goals of the agent with

respect to the current state of a dialogue game. The proper usage of knowledge base in a

dialogue game protocol means efficient disclosure of knowledge, so that an agent can direct

a conversation in a desired way.

Second motivation: Lack of semantics in dialogue game protocols

In previous attempts to compare protocols [36] only functional differences between proto-

cols are discussed. But as dialogue protocols are designed separately from agent design,

components of these protocols can impose some restrictions on agents as they have to obey

obligation rules given in these protocols. These restrictions cause a difference between what

an agent wants to convey and what it can convey using a dialogue game protocol. Thus

protocols should be modeled on the basis of how efficient they are in conveying the right

message.



4 Introduction

1.2 Problem statement

1.2.1 First problem

First, we want to develop dialogue game protocols with certain properties which will extract

the strategic behaviour of the agents. A protocol should give the players opportunities to

react to opponent’s arguments in a structured way, so that the protocol itself can extract

strategic behaviour from how the agents play the game. This problem is divided into two sub-

problems. First, we consider the case in which all communicating agents are homogeneous.

This means all agents have the same obligations to obey the rules given in a protocol. Second,

we consider the case in which agents are heterogeneous so they have to maintain different

levels of obligations.

1.2.2 Second problem

Second, we want to compare protocols in terms of how efficient they are to convey the right

message. This problem creates another problem as components of dialogue game protocols

particularly locutions are modeled according to speech act semantics given in FIPA ACL

specification. This approach is not suitable for our purpose as we want to model how a

protocol can convey the right ‘meaning’ of an utterance. Therefore, we have to develop a

semantics for the components of protocols.

1.3 Approach

For the first problem, we develop two protocols of a dialogue game in defeasible logic. We

use defeasible logic [22] as an argumentation framework. Argumentation semantics for de-

feasible logic is already captured in [5]. The linear complexity of defeasible logic will also

help us in implementing the model. The first protocol [49] is developed for communication

between homogeneous agents. [49] is based on the intuition that agents have the right to

present arguments most favourable to their cases even if they contain some unknown misin-

terpretations. The second protocol [19] is an extension of the first protocol as we consider
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the case of communication between heterogeneous agents. In [19], we consider asymmetric

priorities in a dispute between agents.

For the second problem, we develop a new semantics for locutions in a dialogue game

protocol. We use communication theory to develop the new semantics for locutions. Next

we compare protocols based on this new semantics.

1.3.1 Organization

This thesis is organized as follows. In Chapter 2 we provide a brief literature review regarding

argumentation. In Chapter 3 we discuss about the role of defeasible logic in argumentation.

In Chapter 4 we discuss previous works in dialogue game protocols. In Chapter 5 we present

a dialogue game protocol for homogeneous agents. In Chapter 6 we present another dialogue

game protocol for heterogeneous agents. In Chapter 7 we develop a new semantics for

components according to our second problem. In Chapter 8 we conclude the thesis and

discuss future works.
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2
Argumentation

In this chapter we discuss previous developments in argumentation. In Section 2.1 we sum-

marize the structure of arguments and in Section 2.2 we present related works in artificial

intelligence and law on argumentation, where most of the proposals for dialogue games come

from.

2.1 Argumentation framework

In this section we will summarize the argumentation framework developed in [11] and [51].

An argumentation framework contains arguments and attack relations between arguments.

Definition 2.1.1 An argumentation framework is a pair < Ar,Attack >, where Ar is a

set of arguments and Attack is an attack relation between two arguments so that Attack ⊂
A×B|A,B ∈ Ar. Attack(A,B) means A attacks B.

7
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Definition 2.1.2 A set of arguments S is said to be conflict free if there are no two argu-

ments A and B in S such that there is a relation Attack(A,B).

Definition 2.1.3 An argument A ∈ Ar is acceptable with respect to a set of arguments

S (S ⊂ Ar) if for each argument B ∈ Ar: Attack(B,A) there is a argument s ∈ S:

Attack(s,B).

Definition 2.1.4 A conflict free set of arguments S (S ⊂ Ar) is said to be an admissible

set of arguments if for each argument s (s ∈ S) is acceptable with respect to S.

Definition 2.1.5 A preferred extension of an argumentation framework (AF ) is the maxi-

mal set of admissible arguments.

Definition 2.1.6 A conflict free set of arguments S is said to be the stable extension if S

attacks any argument that does not belong to the set S.

It is shown in [11] that, given an argumentation framework :

• Every stable extension is a preferred extension but not every preferred extension is a

stable extension.

• Every admissible set is contained in a maximal admissible set of arguments.

• Stable extensions do not always exist.

• Preferred extensions always exist.

• Stable and preferred extensions are generally not unique.

Definition 2.1.7 Fixed point semantics of an argumentation framework (AF =< A, Attack >)

is described by a characteristic function as FAF : 2A → 2A

FAF (S) = {A| A is acceptable with respect to S}

Grounded (Skeptical) semantics for argumentation framework is defined as :

Definition 2.1.8 A grounded extension of an argumentation framework AF =< A, Attack >

is the least fixed point of FAF .
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[51] has developed credulous and skeptical semantics for argument games. Given an

argumentation framework AF =< A, Attack > and an argument a(a ∈ A) the credulous

argument game is about constructing at least one admissible set of arguments which contains

a. A skeptical argument is an argument game showing that all admissible sets of arguments

in AF contain a.

2.2 Related works in Argumentation

Substantial work has been done on argumentation games in AI and law. [23] presents an

early specification and implementation of an argumentation game based on the Toulmin

argument-schema without a specified underlying logic. [13] presented The Pleadings Game

as a normative formalization and fully implemented computational model, using conditional

entailment. The goal of the model was to identify issues in the argumentation rather than

elaborating on the status of the main claim. The dialectic proof procedures presented by [12]

focus on minimizing the culprit of argumentation. The proof procedures are expressed as

metalogic programs. DiaLaw [15] is a two player game, in which both players make argument

moves. The model combines the exchange of statements and exchange of arguments, dealing

with rhetorical as well as psychological issues of argumentation. However, the main focus for

the two players is to convince each other rather than defeat an adversary as in our case. The

abstract argumentation systems of [17, 52] study arguments as the object of defeat. The

results, however, are more related to stable semantics than skeptical as in the defeasible logic

utilized in our framework and the study is devised as meta games for changing the rules of

argumentation games.

2.3 Conclusion

In this chapter we have summarized the previous works in argumentation. An argumen-

tation framework is the basis of a dialogue game. A dialogue game describes the process

of constructing valid arguments with respect to an argumentation framework. In the next

chapter, we discuss defeasible logic semantics of argumentation. We will use defeasible logic
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to represent the agents and their arguments and this representation will be used to model a

dialogue game.



3
Defeasible logic and Argumentation

In this chapter we discuss defeasible logic and argumentation semantics of defeasible logic.

3.1 Basic Defeasible Logic

Over the years defeasible logic [22, 38, 53] proved to be a simple, flexible, rule based non-

monotonic formalism able to capture different and sometimes incompatible facets of non-

monotonic reasoning [9], and efficient and powerful implementations have been proposed

[8, 30].

Knowledge in defeasible logic can be represented in two ways: facts and rules.

Facts are indisputable statements, represented either in form of states of affairs (literals).

Facts are represented by predicates. For example, “Tweety is a penguin” is represented by

Penguin(Tweety).

11



12 Defeasible logic and Argumentation

A rule, on the other hand, describes the relationship between a set of literals (premises)

and a literal (conclusion), and we can specify how strong the relationship is. Rules allow us to

derive new conclusions given a set of premises. We distinguish between strict rules, defeasible

rules and defeaters represented, respectively, by expressions of the form A1, . . . , An → B,

A1, . . . , An ⇒ B and A1, . . . , An Ã B, where A1, . . . , An is a possibly empty set of prereq-

uisites (causes) and B is the conclusion (effect) of the rule. We only consider rules that are

essentially propositional. Rules containing free variables are interpreted as the set of their

ground instances.

Strict rules are rules in the classical sense: whenever the premises are indisputable then

so is the conclusion. Thus they can be used for definitional clauses. An example of a strict

rule is “Penguins are birds”, formally: Penguin(X) → Bird(X).

Defeasible rules are rules that can be defeated by contrary evidence. An example of such

a rule is “Birds usually fly”: Bird(X) ⇒ Fly(X). The idea is that if we know that X is a

bird, then we may conclude that X can fly unless there is other evidence suggesting that she

may not fly.

Defeaters are a special kind of rules. They are used to prevent conclusions, not to support

them. For example: Heavy(X) Ã ¬Fly(X). This rule states that if something is heavy then

it might not fly. This rule can prevent the derivation of a “fly” conclusion. On the other

hand it cannot be used to support a “not fly” conclusion.

Defeasible logic is a “skeptical” non-monotonic logic, meaning that it does not support

contradictory conclusions. Instead, defeasible logic seeks to resolve conflicts. In cases where

there is some support for concluding A but also support for concluding ¬A, defeasible logic

does not conclude either of them (thus the name “skeptical”). If the support for A has

priority over the support for ¬A then A is concluded. No conclusion can be drawn from

conflicting rules in Defeasible logic unless these rules are prioritized. The superiority relation

among rules is used to define priorities among rules, that is, where one rule may override

the conclusion of another rule. For example, given the defeasible rules

r : Bird(X) ⇒ Fly(X) r′ : Penguin(X) ⇒ ¬Fly(X)

which contradict one another, no conclusive decision can be made about whether a Tweety
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can fly or not. But if we introduce a superiority relation Â with r′ Â r, then we can indeed

conclude that Tweety cannot fly since it is a penguin.

We now give a short informal presentation of how conclusions are drawn in defeasible

logic. Let D be a theory in defeasible logic (i.e., a collection of facts, rules and a superiority

relation). A conclusion of D is a tagged literal and can have one of the following four forms:

+∆q meaning that q is definitely provable in D (i.e., using only facts and strict rules).

−∆q meaning that we have proved that q is not definitely provable in D.

+∂q meaning that q is defeasibly provable in D.

−∂q meaning that we have proved that q is not defeasibly provable in D.

Strict derivations are obtained by forward chaining of strict rules, while a defeasible conclu-

sion p can be derived if there is a rule whose conclusion is p, whose prerequisites (antecedent)

have either already been proven or given in the case at hand (i.e., facts), and any stronger

rule whose conclusion is ¬p has prerequisites that fail to be derived. In other words, a

conclusion p is derivable when:

• p is a fact; or

• there is an applicable strict or defeasible rule for p, and either

– all the rules for ¬p are discarded (i.e., are proved to be not applicable) or

– every applicable rule for ¬p is weaker than an applicable strict1 or defeasible rule

for p.

Formally a Defeasible Logic (as formalized by [10]) theory is a structure D = (F, R,Â) where

F is a finite set of factual premises, R a finite set of rules, and Â a superiority relation on R.

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of strict and

defeasible rules in R by Rsd, the set of defeasible rules in R by Rd, and the set of defeaters

in R by Rdft. R[q] denotes the set of rules in R with consequent q. In the following ∼ p

denotes the complement of p, that is, ∼ p is ¬q if p = q, and ∼ p is q if p is ¬q. For a rule

1Note that a strict rule can be defeated only when its antecedent is defeasibly provable.
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r we will use A(r) to indicate the body or antecedent of the rule and C(r) for the head or

consequent of the rule. A rule r consists of its antecedent A(r) (written on the left; A(r) may

be omitted if it is the empty set) which is a finite set of literals, an arrow, and its consequent

C(r) which is a literal.

Provability is based on the concept of a derivation (or proof) in D. A derivation is a

finite sequence P = (P (1), . . . , P (n)) of tagged literals. Each tagged literal satisfies some

proof conditions. A proof condition corresponds to the inference rules corresponding to one

of the four kinds of conclusions we have mentioned above. P (1..i) denotes the initial part of

the sequence P of length i. Here we state the conditions for strictly and defeasibly derivable

conclusions (see [22] for the full presentation of the logic):

If P (i + 1) = +∆q then

(1) q ∈ F , or

(2) r ∈ Rs[q], ∀a ∈ A(r) : +∆a ∈ P (1..i).

If P (i + 1) = +∂q then

(1) +∆q ∈ P (1..i), or

(2) (2.1) ∃r ∈ Rsd[q]∀a ∈ A(r) : +∂a ∈ P (1..i) and

(2.2) −∆ ∼ q ∈ P (1..i) and

(2.3) ∀s ∈ R[∼ q] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P (1..i) or

(2.3.2) ∃t ∈ Rsd[q] ∀a ∈ A(t) : +∂a ∈ P (1..i) and t > s.

3.2 Argumentation semantics of defeasible logic

An argumentation system consists of a logical language (defeasible logic), definition of argu-

ment, conflict between arguments and status of an argument. The following definitions are

used for the explanation of argumentation semantics in defeasible logic :

Definition 3.2.1 An argument for a literal P based on a set of rules is a tree, where the

root is P and nodes of the tree are labeled with literals such that for a label H the following

are true :
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• If B is a child node of H then there is a rule in R such that H is the head of the rule

and B is the body of the rule.

• If the above rule is a defeater then H is the root of the argument.

• The arcs in a proof tree are labelled by rules used to obtain the proof.

• Given a theory in defeasible logic D, the set of arguments that can be generated from

D is represented by ArgsD.

• A supportive argument is a finite argument which has no defeater.

• A strict argument is an argument where no defeasible rules are applied. Otherwise the

argument is a defeasible argument.

• An argument A is supported by a set of arguments S if every proper subargument of

A is in S.

Definition 3.2.2 Attack relations among arguments: An argument A attacks a defeasible

argument B if the conclusion of A is the opposite of the conclusion of B and conclusion of

B is not a part of a strict subtree. A set of arguments S attacks an argument A if there is

an argument B in S such that B attacks A.

Definition 3.2.3 Undercut attack: A defeasible argument A is undercut by a set of argu-

ments if S supports an argument B which attacks a proper non-strict subargument of A.

The undercut definition presented here [5] is slightly different from Pollock’s theory of

defeasible logic. In [40] the undercut attack is defined as ‘we can think of it as giving us a

reason for believing that (under the present circumstances) the truth of the premises does

not guarantee the truth of the conclusion’. So if an argument A (and a subargument B,

which acts as the premise of A) is undercut by an argument S it can be interpreted as

S preventing the implication of A from B even if B is true. Here the conclusion of S is

not necessarily the opposite of the conclusion of B. But according to the defeasible logic

semantics we follow here, the conclusion of S is necessarily opposite to that of B (or sub
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arguments of B). Again, ‘the truth of the premises does not guarantee the truth of the

conclusion’ is an inherent property of the defeasible type [22] of rules (⇒) and ’. . . believing

that (under the present circumstances) . . . ’ suggests that ‘the truth of the premises’ does

not hold but the inference relation ‘if B then it may be A’ is still valid but not applicable.

Definition 3.2.4 Status of an argument: The notion of acceptance of an argument A with

respect to a set of arguments S is as follows: if we accept S is valid then we have to accept A.

Using this intuition justified the set of arguments JD
i in a theory D defined by the following

recursive construction :

JD
o = ∅

JD
i+1 = {a ∈ argsd|a is acceptable with respect to JD

i }

The set of justified arguments in a defeasible theory D is represented as JargsD =

{∪∞i=0J
D
i }. A literal p is justified if it is the conclusion of a supportive argument in JargsD.

Defeasible logic can be tuned to describe nonmonotonic phenomenon as ambiguity block-

ing and ambiguity propagation. Defeasible logic has an ambiguity blocking nature but it

can be modified to show ambiguity propagation nature.

Definition 3.2.5 Grounded semantics and ambiguity propagation: In the case of ambiguity

propagation2, the acceptability is defined as follows. An argument A is acceptable with respect

to a set of arguments S if A is finite and

• A is strict, or

• Every argument attacking A is attacked by S.

The rejection of an argument for ambiguity propagation is defined as follows: Given

S and T as sets of verified and rejected arguments, an argument A is rejected by sets of

arguments S and T if A is not strict and either of the following is true :

2Ambiguity propagation semantics for defeasible logic has a stronger provability condition for ±∂ proofs.

In this case, to prove a literal p we require that a rule with conclusion ∼ p is not applicable because its

premises can not be supported. See [5] for details.
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• one proper subargument of A is in S

• A is attacked by a finite argument in T .

Provability of defeasible logic is applied for ambiguity propagation as follows: Let D be

a defeasible theory, p is a literal and T be a set of arguments

• D ` +∂app iff p is justified.

• D ` −∂app iff p is rejected with respect to T .

Defeasible semantics and ambiguity blocking: In the case of ambiguity blocking3 the ac-

ceptability is defined as follows. An argument A is acceptable with respect to a set of

arguments S if A is finite and :

• A is strict or

• Every argument attacking A is undercut by S.

The rejection of an argument for ambiguity blocking is defined as follows. An argument

A is rejected by sets of arguments S and T if a is not strict and either of the following is

true :

• One proper subargument of A is in S

• A is attacked by an argument supported by T .

Provability of defeasible logic is applied for ambiguity blocking as follows. Let D be a

defeasible theory, p is a literal :

• D ` +∂app iff p is justified.

• D ` −∂app iff p is rejected JArgsD.

3Semantics for ambiguity blocking defeasible logic does not allow contradictory conclusions. The seman-

tics [22] is the same as the defeasible logic described in the previous section
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3.3 Conclusion

In this chapter we gave an overview of argumentation semantics for defeasible logic. We will

use this semantics to develop dialogue games and the tree representation of arguments is

further extended in Chapter 7, where we will sketch the semantics for the ‘meaning’ of the

speech acts. In the next chapter we discuss current developments in dialogue games.



4
Dialogue game protocol

4.1 Introduction

Dialogue game protocols are developed to model agent interaction. In a dialogue game

there is a specific topic and the agents take turns to present their arguments. A dialogue

game protocol imposes some rules upon the communicating agents so that the presented

arguments are valid and the communicating agents have a fair chance to win the game.

There are different types of dialogue game as shown in Chapter 1:

1. Information seeking dialogue game [27].

2. Inquiry dialogue game: In this type of dialogue game, agents collaborate to answer

some question [32].

19
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3. Persuasion dialogue game: In this type of dialogue game, an agent tries to persuade

another agent to accept an argument [28], [41], [44].

4. Negotiation dialogue game: In this type of dialogue game, agents argue about share

and trade-off some resources [21], [31], [48].

5. Deliberation dialogue game: In this type of dialogue game, agents argue about the

course of actions to be undertaken by the agents [18].

6. Coalition formation dialogue game: In this type of dialogue game, agents argue for

coalition formation [24].

A general semantics of a dialogue game protocol is as follows:

1. There is a specific topic in a dialogue game.

2. Agents takes turns to present an argument.

3. Arguments must support or oppose the topic of dialogue.

4. Arguments presented at any stage of the game (except the first step) must oppose

arguments of previous step(s).

5. An agent can not repeat an argument1.

6. An agent must not contradict its own argument (what it has said before).

1In most of the previous works in dialogue game protocols repetition of a dialogue is not allowed. This is

because of the following reason :

• Once a dialogue is presented it will be either accepted or rejected by the other player. In the case where

the dialogue is accepted, there is no need to repeat it as the rule representing the dialogue remains

and in a case where the dialogue is rejected, if it is again repeated then it will be again defeated

by the counter argument of the other player, who has to repeat its counter argument again. It will

definitely slow the process to reach a result through argumentation and even prevent any conclusion

being reached at all.
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7. An agent can retract what it has said before (a persuasion dialogue game may not

allow this).

8. If an agent runs out of moves then the other player wins the game.

In this chapter we discuss (1) classification of a dialogue game into components, (2)

logical properties of a dialogue game, (3) desired properties of a dialogue game and (4)

related works in AI and law about argumentation.

4.2 Components of a dialogue game

Different dialogue protocols have been proposed for the different types of dialogues mentioned

in the previous section. As classified by [33], all these protocols share some basic components

of dialogues such as

1. Commencement rules: Commencement rules initiate a dialogue game. These rules

decide the topic of a dialogue game. Agents can be involved in some interactions to

decide the topic of a conversation.

2. Locutions: Locutions are move labels in a dialogue game. A dialogue game protocol

can have a finite number of locutions. Examples of locutions are Assert, Justify and

Propose. Different dialogue game protocols can have the locutions with the same

functionality but with different names.

3. Combination rules: Combination rules indicate which locutions are permitted at a

particular stage of the protocol.

4. Commitments: Rules that define circumstances under which participants express com-

mitments to propositions.

5. Termination rules: Circumstances under which the dialogue game ends.

Among these components, locutions are the most important. Other components are

the same for different protocols. [35] provides a semantics of locution, which is similar to
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FIPA [4] speech act semantics. Semantics of a speech act is described by (1) feasibility

preconditions and (2) rational effect. Feasibility preconditions are conditions which must be

satisfied before an agent can use a speech act. Rational effects are conditions that will arise

once an agent utters a speech act. For example: Informa,b{M} (Agent a wants to INFORM

agent b that it is M) has the following semantics :

• Feasibility preconditions: Ba(M) ∧ Ba(Bb(M)) ∨ Ba(Bb(¬M)). This means agent a

believes that it is M and it believes that agent b does not have any opinion about M .

• Rational effects: The rational effect of Informa,b{M} is Bb(M) which reads as B

believes that it is M after a informs b that it is M .

[35] has followed the following syntax for a locution :

illocution(Pi, χ) or illocution(Pi, Pj, χ)

where Pi and Pj are identifiers or names of the agent who is uttering the locution and χ is

the content of the locution. [35] has developed syntax for 5 principal locutions as follows :

F1: Assert(Pi, χ): Speaker Pi asserts that it is χ. By uttering this locution Pi has an

obligation to justify if asked by an opponent.

F2: Question(Pi, Pj, χ): Speaker Pi questions a previous utterance Assert(Pj, χ) of Pj, so

Pj has to justify its previous utterance. Pi does not have any obligation to use the

Question locution.

F3: Challenge(Pi, Pj, χ): Speaker Pi challenges Pj’s previous utterance as Assert(Pj, χ),

so Pi has to justify its previous argument. Locution Challenge imposes an obligation

on Pi that it has to justify ¬χ when asked by an opponent.

F4: Justify(Pj, Th `+ χ): By uttering Justify locution, agent Pj provides supportive

argument Th to its previous argument Assert(Pj, χ). Justify(Pj, Th `− χ) shows

pj’s justification Th against χ (which is asserted by another agent).

F5: Retract(Pi, χ): Agent Pi withdraws its previous argument Assert(Pi, χ). By with-

drawing the previously asserted statement Pi removes all obligations regarding χ.
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The combination rules for the above locutions are as follows :

[35] has given semantics of locution in accord with FIPA ACL. This semantics has three

components: (1) preconditions; (2) post conditions; (3) dialectical obligations. The seman-

tics of the locutions are as follows:

Assert(Pi, χ)

• Precondition: Speaker Pi desires another agent Pj to believe that Pi believes χ.

• Post Condition: Opponent agent believes that Pi desires that the opponent to

believe that Pi believes χ.

• Dialectical obligations: Pi may have to justify χ.

Question(Pj, Pi, χ)

• Precondition: Pi has an obligation to justify χ and Pi desires that Pi believes that

Pj desires that Pi utters Justify locution in support of χ.

• Post condition: Pi must utter a justify locution.

• Dialectical obligations: No effect.

Challenge(Pj, Pi, χ)

• Precondition: Pi has the obligation to justify χ and Pj desires that Pi believes

that Pj desires Pj to utter Justify locution and Pj does not believe χ.

• Post condition: Pi must utter Justify in support of χ.

• Dialectical obligations: Pj has obligations to justify ¬χ.

Justify(Pj, Th `+ χ)

• Precondition: Pj has an obligation to justify χ and Pi has uttered either Challenge(Pi, Pj, χ)

or Question(Pi, Pj, χ) and Pj desires that Pi believes that Th is an argument for

χ.

• Post condition: Opponent(Pi) believe that Pj desires that Pi believes that Th is

an argument for χ.
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• Dialectical obligations: Pj has the obligation to justify Th.

Retract: Retract(Pi, χ)

• Precondition: Pi desires that opponent believes that Pi no longer beliefs χ

• Post Condition: Pj beliefs that Pi desires that Pj believes that Pi no longer

believes χ

• Dialectical obligations: Successive obligations for Assert or Challenge made on

χ are no longer valid.

4.3 Logical properties of dialogue game

Every dialogue game protocol has some logical properties such as :

• Termination rule

• Computational complexity

• Automatability

• Soundness

• Fairness

Termination rules: ‘Termination’ of a dialogue game is the circumstances where the game

ends.

[39] provides termination conditions for information seeking dialogues, enquiry dialogues

and persuasion dialogues. In an information seeking protocol given a ‘question(P )’, an agent

can ‘assert(p)’ or ‘assert(¬p)’ ‘assert(∅)’ (this means the agent has no opinion about p). A

confident agent presents an assert proposition if it has an argument for it and a thoughtful

agent asserts only if it has an acceptable argument. A credulous agent accepts a proposition

p if there is an argument for p. A cautious agent accepts p if it is unable to construct an

argument for ¬p. A skeptical agent accepts p if there is an acceptable argument for p. [39]

assures that
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An information seeking dialogue under protocol IS between a credulous, cautious

or skeptical agent G and a confident or thoughtful agent H will always terminate.

The explanation for a ‘definite’ termination is as follows:

1. If the response of H is ‘assert(∅)’ then the game terminates.

2. If G is credulous, then it will accept p (or ¬p).

3. If G is cautious, then G will either accept p or has arguments for ¬p. In the latter

case it will challenge p and will receive a response (an argument S for p). If G does

not has an argument against s ∈ S then s will be accepted but still p will not be

accepted. As G can utter only ‘challenge(p)’ the dialogue will terminate. If G has an

argument against s, then it will challenge those arguments and will generate a response

as {{s},s} from H, which G can not accept and also can not challenge as it will repeat

challenge(s). So the game will terminate.

4. If G is skeptical, then it will accept only ‘acceptable’ arguments from H, which includes

further arguments on subarguments for ‘assert(p)’.

[39] follows a protocol for enquiry dialogue as if agent B enquiries about some proposition

p then agent A will answer as q → p. Agent B can accept it of challenge it. In later case, A

will provide argument for its assertion, which can also be challenged by B. [39] asserts that

An enquiry dialogue I between agents G and H with any acceptance or assertion

will terminate.

The explanation for this termination is that enquiry dialogues can be converted into in-

formation seeking dialogues (with roles of the agents changing) and as information seeking

dialogues always terminate, the enquiry dialogue will always terminate. [39] presents a per-

suasion dialogue game protocol which allows an agent to ‘assert(p)’ and in response, the

opposition agent can challenge p as assert(¬p) or challenge(p). In the first case, the roles

of the agents are reversed. In the second case, the first agent provides an argument for

‘assert(p)’, which can be accepted or challenged by the opposition agent. [39] assures that

this persuasion protocol always terminates. The explanation for termination is :
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1. Persuasion dialogue protocol (P) is the same as the information seeking protocol (IS)

and as IS terminates, P will also terminate.

2. The only exception is that Assert(¬p) is allowed in P . This could lead to a non-

termination situation if another agent presents Asset(p). But as the agents can not

repeat the same dialogue the game will terminate.

[50] describes termination circumstances for negotiation dialogues in abductive logic. In

persuasion dialogues, termination is a circumstance where an agent runs out of moves as

described in [49], [19].

Complexity: [25] discusses computational complexity of dialogue games. [25] describes

the complexity problem of dialogue as :

1. when the given argument can be defended, how many rounds could it take to prove to

a challenging party that the argument may be defended against any attack?

2. when the given argument cannot be defended against all possible attacks, how many

rounds must it take to convince putative defenders that their position is untenable?

Soundness: [45] describes soundness for persuasion dialogues as:

. . . if the proponent wins a dispute, its initial argument is defeasibly provable on

the basis of what has been said in the dispute?

Fairness or Completeness: [45] defines fairness for persuasion dialogue as:

Is a given protocol for dispute fair (or complete), in the sense that if a certain

argument becomes defeasibly provable on the basis of what has been said in the

dispute, the proponent (opponent) can win any continuation of the dispute in

which no new information is introduced?

4.4 Desired properties of protocol

[37] made an attempt to identify the desired properties of a dialogue game protocol to be

efficient as an agent interaction protocol. [37] has identified 13 properties as follows:
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1. Stated dialogue purpose: A dialectical system must have a stated purpose which is

publicly announced. For example, in negotiation dialogues the share of resources must

be publicly announced. This will help agents to participate in a dialogue game.

2. Diversity of individual purpose: A dialectical system must allow agents to follow their

own purpose consistent with the overall purpose of the game.

3. Inclusiveness: A dialectical system must not preclude participation of agents.

4. Transparency: Participants should know the rules of the game in advance.

5. Fairness: All participants should be treated equally otherwise any asymmetries should

be made explicit.

6. Clarity of argumentation theory: A dialectical system should conform to an argumen-

tation theory. This will ensure arguments and counter arguments are syntactically

correct.

7. Separation between syntax and semantics: This separation will allow the usage of the

same protocol syntax for different semantics.

8. Rule consistency: The locutions and game rules should be consistent.

9. Encouragement of resolution: Resolution to each dialogues should be facilitated.

10. Discouragement of disruption: Disruptive behaviour of participants should be dis-

carded.

11. Enablement of self-transformation: The dialectical system should allow agents to

change their preferences during the course of the game.

12. System simplicity.

13. Computational simplicity.
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4.5 Dialogue game in artificial intelligence and law

Inference System (IS) was proposed in [41] to capture dialogue games. A theory in IS is

represented by TIS = (R,≤) where R a is set of strict and defeasible rules and ≤ is a partial

preorder which resolves any conflicts on precedence between rules. Arguments are justified,

overruled and defensible depending on the outcome of the dialogue game. [42] describes the

burdens associated with IS. According to [42], there are three kinds of burdens, namely, (1)

burden of persuasion (2) burden of production and (3) tactical burden of proof. The burden

of persuasion determines which party will be losing if the evidence is balanced. Burden of

production concerns on whom, at any time of the game, the burden of presenting evidence is

placed. Tactical burden of proof concerns a party’s assessment of the risk of losing a game.

In [41], players have fixed roles as the burden of prosecution lies on the proponent, leaving

the opponent with the burden to interfere. [44] modified IS as it proposes switching of roles

in a Litigation Inference System (LIS). A theory in LIS is represented as TLIS = (R,≤, bπ, bδ)

where (R,≤) is an IS theory. bπ, bδ are burdens of prosecution for proponent and opponent

respectively. [46] modifies LIS and proposes an Augmented Litigation Inference System

(ALIS) which generates the content of bπ, bδ as a result of an argument-based reasoning. A

theory in ALIS is represented as TALIS = (R,≤), where (R,≤) is the IS theory described

by a language which has a predicate burden. burden(p, l) means that on the player p is

placed the burden of prosecution for the literal l. A dialogue move m has three components:

(1) pl(m) the player who made the move; (2) r(m) the role of the player; and (3) a(m) the

argument put forward in the move. ALIS imposes a protocol to be followed by the players.

The protocol in ALIS differs from the protocol proposed in LIS in the sense that (1) if

in the adjacent previous step the opponent weakly defeated an argument proposed by the

proponent, then in the current step the proponent can argue that the opponent now has a

burden on that literal; and (2) if the players weakly defeat each other while in their opponent

role, then the plaintiff can argue that the defendant has the burden of proof.

Modelling dialogue games in defeasible logic has been addressed by [14, 26, 29]. [14]

focuses on persuasion dialogues and it includes the cognitive mental states of agents such

as knowledge and belief. In addition it presents some protocols for some types of dialogues
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(e.g. information seeking, explanation, persuasion). The main reasoning mechanism is based

on basic defeasible logic (see Section 3.1) and it ignores recent developments in extensions

of defeasible logic with modal and epistemic operators for representing the cognitive states

of agents [6, 7], and it does not cover adversarial dialogues. [26] provides an extension of

defeasible logic to include the step of the dialogue. A main difference is that the resulting

mechanism just defines a metaprogram for an alternative computation algorithm for ambigu-

ity propagating defeasible logic while the logic presented here is ambiguity blocking. In [29],

the authors focus on rule scepticism and propose the use of a sequences of defeasible (meta)

theories, and use meta-reasoning (meta-rules or high level rules) to assess the strength of

rules for the theories at lower levels.

4.6 Conclusion

We want to model a dialogue game protocol to extract the strategic behaviour of agents.

We are inspired by [26] as we have separated the knowledge of the players into (1) private

knowledge and (2) public knowledge. The common public knowledge forms the common

set of arguments, which is a theory in defeasible logic. In the next chapter we describe our

dialogue game protocol for homogeneous agents.
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5
Dialogue game in defeasible logic

5.1 Introduction

Agents interact with other agents. Among two agents, the nature of their interactions can be

of various kinds. Here we consider two types of interaction: cooperative and adversarial. In

a cooperative situation the agents exchange information with the aim of reaching a common

goal, while in an adversarial scenario the goals of the parties are conflicting. However, this

does not imply a clear-cut dissimilarity between the two types of interaction. Conflicting

sub-goals often are found amongst agents in a cooperative setting, while in an adversarial

discussion one agent may partially accept a proposal of her adversary as it provides a stronger

justification of her case.

These kinds of interactions are part of the broader field of argumentation, and formal

argumentation is the branch using logic and (formal methods in general) to model it. Over

31



32 Dialogue game in defeasible logic

the past few years a line of research emerged for the representation of these type of arguments:

dialogue games. Dialogue games have proven to be extremely useful for modelling some forms

of legal reasoning. In this chapter we focus on one form of dialogue games, the adversarial,

where the two parties debate one topic.

Most formal models of dialogues provide computational and procedural representations

of some real-life domain (e.g., legal reasoning). Dialogue games are by their own nature de-

feasible, meaning that arguments put forward by one of the agents in support of a conclusion

can be defeated by contrary evidence put forward by the other agent. Accordingly, standard

model-theoretic semantics is not appropriate for this kind of reasoning. Dung [11] proposed

argumentation semantics to obviate this issue. The main idea of argumentation semantics

is that the main objects we evaluate are “arguments”1. Various relationships (e.g. attack,

rebut and defeat) between arguments are defined by the semantics, and the relationships

are extended to sets of arguments. The key notion for a set of arguments is the notion of

support, that is whether a set of arguments is self-consistent and provides the base to derive

a conclusion; in other words, if it is possible to prove the conclusion from the rules, facts

and assumptions in the set of supporting arguments. A conclusion is justified, and thus

provable, if there is a set of supporting arguments and all counterarguments are deficient

when we consider the arguments in the set of supporting arguments. Various argumentation

semantics have been proposed to capture different relationships between supporting and op-

posing set of arguments. However, in general some forms of argumentation semantics are

able to characterize dialogue games [45].

Defeasible logic [22, 38] is an efficient non-monotonic formalism that encompasses many

logics proposed for legal reasoning. Defeasible Logic can be characterized in terms of argu-

mentation semantics [5], thus the correspondence between defeasible logic on one side and

dialogue games on the other follows implicitly from their common semantics. The aim of this

chapter is to propose a direct mapping between dialogue games and defeasible logic, and to

show that defeasible logic offers a general, powerful and computationally efficient framework

1In the abstract formulation of the argumentation semantics ‘arguments’ are left unspecified, however,

in the majority of concrete instances of the argumentation framework, arguments are defined as a chain of

reasoning based on facts or assumptions and rules captured in some formal language or logic.
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to model and to extend dialogue games.

The chapter is organized as follows: in Section 5.2 we outline the basic ideas of dialogue

games and in Section 5.3 we show how to adapt defeasible logic to model dialogue games.

5.2 On dialogue games

We consider dialogue games as a game where we have two players called the Proponent

and the Opponent. Each player is equipped with a set of arguments, a subset of which

the players move, i.e. take turns in putting forward. The aim of the game is to justify a

particular conclusion while adhering to the particular protocol scheme governing the game.

A basic protocol for the admissible moves by the players would be, for the proponent, that

the current move attacks the previous move of the opponent, and that the main claim (the

content of the dispute) follows from the arguments assessed as currently valid. For the

opponent, we have that the arguments of the move attack the previous move, and the main

claim is not derivable. Even though more complex winning conditions are possible, by a

basic protocol a player wins the dialogue game when the other party is out of admissible

moves.

5.3 Modeling dialogue games in defeasible logic

During the dialogue game the agents take turns in presenting their arguments (rules). The

literal the agents are trying to prove or disprove will be called the critical literal. The

intuition behind the notion of critical literal (cl) is as follows: the cl is the central issue of the

confrontation between two agents. Agents may have confrontation about other literals and

arguments from which cl can be inferred. Arguments presented by an agent may not include

cl (except the first step of a dialogue game) but it must alter the proof of the cl with respect to

its proof in the previous step of the dialogue game. Each agent has knowledge that initially

is known only to the agent (private knowledge). Initially all the arguments are private.

In addition, both agents have access to a set of common knowledge. By putting forward

arguments from the private knowledge of an agent, these arguments become part of the set
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of common knowledge. We assume that all arguments (rules) are defeasible, acknowledging

an agent’s right to put forward interpretations of assumptions, fact and evidence in the way

most favorable for his case (cf. [29]). The set of common arguments is continuously updated

at each step and defeated defeasible rules are removed at each step. At any time the set

of common arguments contains defeasible rules only from the current step ti and adjacent

previous step ti−1 and facts, strict rules from previous steps. The theory of common set of

arguments is Tcommon = (F, R, >), where F is the set of facts, R is the set of rules, > is the

superiority relationship among the rules. At each step the proof procedure is applied on the

critical literal. The nature of the game determines the burden as well as the winner of the

game. A party wins the game if the proof is +∆A (A is the critical literal) at any stage of

the game. If a party at any stage of the game proves +∂A (A is the critical literal) the other

party has the burden to produce proof of −∂A, or −∆A or +∆¬A or +∂¬A. Our notion

of burden is restricted only to the critical literal unlike the notion of burden in [41]. The

condition that an agent cannot repeat its rule is unnecessary in our model. If a rule C(r) has

been put forward and successfully defeated any counter arguments supporting the opposite

conclusion ¬C(s), the rule C(r) is added to the common set of knowledge. In accordance to

our protocol, the rule C(r) will effectively prevent the opponent from putting forward the

defeated arguments (rules) ¬C(r) into the dialogue as we require all admissible arguments

to be defeating opposing arguments presented at a previous step. In addition this criterion

guarantees that the dialogue game terminates, since we assume the private and public set of

arguments are finite.

5.3.1 A protocol

Mainly we adhere to the protocol of a dialogue game captured in [41, 42, 44, 46]. Thus, the

rules for our dialogue games are as follows:

1. The parties cannot present arguments in parallel. Thus, the parties take turns in

presenting their arguments.

2. As we allow for each agent to put forward as argument the interpretations of rules

and evidence in the way most favorable for his case, all arguments presented by an
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agent are initially treated as defeasible rules. If in the next step the other party fails

to provide valid counter arguments, these defeasible rules will be upgraded to strict

rules.

3. The arguments in support of a critical literal ¬A presented by a party 1 at any step

must attack (at least) the conclusion in support of the critical literal A put forward by

the other party 2 in the previous step. Moreover, in order to prevent a strengthening

of the defeasible rules in support of A in the set of common arguments and to remove

from the set of common arguments all defeasible rules which have as conclusion A,

party 1 must present at least one new argument with its own critical literal ¬A as its

conclusion.

4. An agent cannot attack its own arguments. In our dialogue game framework it is not

admissible for an agent to contradict itself by putting forward rules with a conclusion

that contradicts a rule previously presented by the agent.

5. A particular dialogue game is won by an agent when the other party at its turn cannot

make an admissible move.

6. A argument r is stronger than an argument s, conflicting with r and played in the

previous time-step, if r is not attacked in successive steps.

7. A valid argument will remove all contradictory arguments from the common set of

knowledge.

5.3.2 Strengthening of rules

Dialogues are parsed into a defeasible theory. The time of a dialogue is translated as the

time of a rule. All the rules presented at the current step ti and at the adjacent previous step

ti−1 are defeasible rules. Here we consider time as a set of finite numbers and each number

is one unit more or less than its previous or next number. If not immediately rebutted by

the other party, we allow for the rule strength of a rule to be strengthened from defeasible

into strict. Strengthening defeasible rules to strict rules is the central theme of this thesis.
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The rationale behind this idea is as follows: arguments presented by an agent are defeasible

in the sense that they are available for attack by the other agent in the next step. But if the

other agent does not attack in the next step then it can not attack in future (as assumptions

will be changed to facts, which can not be rebutted and defeasible rules will be changed to

strict rules which can be only undercut). This gives the agents a specific opportunity to

attack the defeasible rules and extracts the strategic behaviour of the agents. Consider an

example as follows:

Let the set of arguments for the critical literal cl, presented by an agent A at the step i be

Ari = {⇒ d,⇒ b, d, b ⇒ a, a ⇒ cl, }. Ari can be represented as a tree [5] shown in Figure 5.1,

where each node represents a literal with the root as the critical literal, a directed path from

a node (say x or child node) to another node (y or parent node) represents a rule as x ⇒ b

and the leaf nodes are either assumptions or facts. Here child and parent relations consider

only two nodes with a directed path from child to parent and do not include transitive

relations. Given a node n1 with child nodes n2, . . . , nk represents a rule as n2, . . . , nk ⇒ n1.

Now agent B presents an argument Ari+1 in the next step. In Ari+1, B can attack any

set of nodes in the tree representing Ari. Say B attacks nodes z = {z1, . . . , zh}. By doing

so all parent nodes of z (and z itself) are defeated by B and B has chosen not to defy the

child nodes of z and all other nodes which are not in z and not among the parents of z. For

example Ari+1 can be ⇒ x, x ⇒ ¬b. So that B chooses not to defy ⇒ d. This choice of

attack shows the strategic behaviour of the agents as follows:

• B can use ⇒ d in its future arguments. Given a choice of counter arguments B

have to choose which arguments has strategic importance in the sense that B can use

arguments of A in its favour as it may be the case that B had no information about the

assertion d (or had sufficient doubt about the assertion d) but has information about

arguments which involve d as premise and that defy Ari. A’s assertion of d gives B

the chance to proceed with an argument that involves an assertion of d. So the agents

choose their counter arguments wisely, which reflects their strategic behavior.

• A should be careful about what information it should reveal in order to prove cl as

we have seen that B can use some information from A to defy A’s arguments which is
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Figure 5.1: Strategic behaviour

previously unknown to B. So A’s choice of Ari reflects the strategic behaviour of A.

In this thesis we present the mechanism to guide the dialogue game that supports strategic

behaviour as we develop dialogue game protocols. But the mechanism for choosing arguments

those are strategically important is not in the scope of this thesis.

A rule is represented as Rt
x|x ∈ (d, s, sd) where t is the time (or the move when the rule

has been played), d means the rule is defeasible, s means the rule is strict, sd means the

rule is either strict or defeasible. We write a@t to denote the literal a being put forward or

upgraded at time t . The condition for upgrading a defeasible rule to a strict rule is described

below.

If P is the conclusion of a defeasible rule of the adjacent previous step ti−1 , we upgrade

the strength of the rule to strict in next step ti+1 if

∃r ∈ Rt′
d [P ] t′ < t ∀t′′ : t′ < t′′ < t Rt′′

sd[¬P ] = ∅ and ∀a ∈ A(r) : +∆a@t.

We consider that the strength of the strict rule is greater than the defeasible rule.

If ∀r ∈ Rt1
s [q] and ∀s ∈ Rt1

d [¬q], then r >t1 s.

At each step of the game, if an argument (rule) has precedence over any contradictory

defeasible rule of the previous steps, an agent is allowed to put forward that argument. The

strength is determined either by previously known superiority relationships or the validity

of the rule. We assume that if at time t2 we have a valid rule Rt22 which contradicts a
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defeasible rule Rt11 of time t1 and t2 > t1, the strength of Rt22 is greater than Rt11. We will

use defeasible logic to determine the strength of a new rule.

w > s if +∂(w > s)

+∂(w > s)@t iff w > s ∈ (>) or w ∈ Rt′ [P ], s ∈ Rt[¬P ] where t′ < t.

5.3.3 Transition rules

The sets of common arguments construct the theories T1, T2, T3, . . . respectively. Here the

subscripts indicate the time at which the sets of common arguments are constructed. If at

time 1, the game begins and arguments in support of a critical literal A are put forward by

the proponent, then T1 contains only defeasible rules. At time 2, the opponent proposes new

defeasible rules which by the above presented precedence rules are stronger than some rules

in theory T1. The set of common arguments of the first two theories T1 and T2 consists only

of defeasible rules. (Theory T2 consists of defeasible rules from both time 1 and time 2.)

Let the first theory T1 = ({}, R1
d, >) be created from arguments (ARG1) of the proponent,

and the second theory T2 = ({}, R2
d, >) be created through modifications of T1 by arguments

(ARG2) from the opponent. Now the transition rules from the first theory to the second

theory are:

1. If r ∈ R1
d and ∀s ∈ ARG2. ¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R2

d.

2. All rules of ARG2 are added to T2 as defeasible rule. Here we assume that ARG2 is

valid and that a valid argument, by the above defined precedence relations, is stronger

than any contradictory argument of the previous step.

At time 3, theory T3 is created through modification of T2 by arguments (ARG3) of the

proponent. The rules for transition from T2 to T3 are :

1. If r ∈ R1
d and ∀s ∈ ARG2,¬C(s) 6= C(r)∧¬C(s) /∈ A(r), then r ∈ R3

s. Here we should

note that the proponent will not oppose its previous argument. Thus, all unchallenged

rules of time 1 are upgraded as strict rules at time 3.
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2. If r ∈ R2
d and ∀s ∈ ARG2,¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R3

d. All unchal-

lenged defeasible rules of time 2 are added to T3 as defeasible rules at time 3.

3. All rules of ARG2 are added to T3 as defeasible rules. Here we assume that ARG2 is

valid and that a valid argument, by the above defined precedence relations, is stronger

than any contradictory argument of a previous step.

Subsequent transitions are conducted in the same way as presented in the transition rules

from T2 to T3. To be noted is that in the first two theories only proof of +∂A or −4A of a

literal A could result. Thus, this framework needs at least three steps in order to determine

a winner of a particular game. When a party cannot produce defeasible rules that will

defeat contradictory defeasible rules presented by the other party at the previous step, the

undefeated defeasible rules of the latter party will be strengthened into strict rules. This

allows this party to support its argument and hence prove the critical literal definitely. Let

theory Ti be created through modification of theory Ti−1 by argument (ARGi) of player 1

and the critical literal A is defeasibly proven +∂A in this theory. Let it be that at time i + 1,

player 2 cannot produce any arguments defeating the arguments of player 1, then player 1

wins at time i+2 as the proof as +∂A by the strengthening of the rules from defeasible into

strict will result in the proof +4A at time i + 2.

5.3.4 An example

Now we will present the model of dialogue game defeasible logic using an example. Consider

an argumentation game with two players, Alice and Bob. Agent Alice is trying to prove A

and agent Bob is trying to prove ¬A using defeasible logic. At each step of the dialogue game

they maintain a current set of rules (CRt, where t is the time) in which a rule consists of its

name R′i (where R′i indicates that the rule belongs to the current set CRt as opposed to the

rules present in the private knowledge bases of the parties denoted by Ri), its antecedent

A(r), which is a finite set of literals, an arrow, its consequent C(r) which is a literal and

@txx ∈ {1, 2, 3, . . . , n} denotes the time of the rule), which is updated at each step. Let it

be that at time t1 the game starts and Alice makes the first move as :

R1 : ∅ ⇒ B, R2 : B ⇒ A .
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This will generate two defeasible rules as R′1(∅ ⇒ B)@t1, R′2(B ⇒ A)@t1. Thus at time t1

CRt1=[R′1, R′2] and we have proof +∂A@t1. But at time t2, Bob presents new evidence in

order to disprove A. At time t2(t2 > t1), Bob presents the following argument:

R3 : ∅ ⇒ D, R4 : D ⇒ ¬A

This will generate two new defeasible rules as R′3(∅ ⇒ D)@t2, R′4(D ⇒ ¬A)@t2. Now,

Bob only attacks R′2 presented by Alice at the previous step by R′4 and R′2 is removed from

CR. Note that as t2 > t1, the strength of R′4 is greater than R′2 the strength determination

rule. At time t2, R′1 remains unchallenged and it is changed to a strict rule as R′1(∅ →
B)@t2(which is a fact). Note that we change the time stamp of the rule from t− 1 to t2 to

indicate that it is a member of CR at time t2. At each step the time stamp of all facts and

strict rules are also changed to current time to match with the CR time stamp. So CRt2

becomes [R′1, R′3, R′4]. The proof at time t2 is +∂¬A. To be noted is that at this time the

common set of knowledge also consists of the knowledge presented by Bob at t2. Thus, in

order to succeed the argument presented by Alice needs to defeat these (new) arguments as

well. Therefore, at time t3, Alice presents the following arguments:

R5 : B ⇒ ¬D, R6 : ∅ ⇒ E and

R7 : E ⇒ A.

So the translated defeasible rules are R′5(B ⇒ ¬D)@t3, R′6(∅ ⇒ E)@t3, R′7(E ⇒
A)@t3. Now the CRt3 is [R′1, R′5, R′6, R′7] as R′3 and R′4 are defeated by R′5 and

removed. So the proof at time t3 is +∂A. If Bob does not present a valid argument in the

next step, Alice wins the game as we allow an agent to upgrade the strength of unchallenged

rules in the next time t4. Thus, in t4 Alice can upgrade the defeasible rules supporting the

proof of +∂A into strict rules and subsequently prove +∆A.

Reconsideration

By reconsideration we mean an agent can change its argument put forward at a previous

step. In our argumentation framework, as in dialogue games in general, reconsideration is

not possible as rules are either carried to the next step as strict rules or facts, or they are
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defeated and removed. If the rule is removed, the agent can no longer argue based on this

previous decision. Also, if the status of the rule is strengthened it cannot be defeated and

removed. But in a step an agent can have more than one set of suitable arguments. Here

we present some intuitions on how to efficiently distinguish between these choices.

An agent can argue with additional information even if it is not related to the current

argument in order to block an opponent’s future arguments at an early stage. For example,

if at t1, Alice presents two arguments as R1 : A ⇒ B and R2 :⇒ ¬D, which is defended

by Bob at t2 by R3 : C ⇒ ¬B R2 is strengthened into a fact at t3. Now at t3, Alice passes

argument R4 : E ⇒ B. Thus, at t4 Bob has only one argument to defend as R5 : D ⇒ ¬B.

Bob cannot put forward argument R5 as R2 is a fact and stronger than R5. Hence Alice

wins. This will save one step as if Alice had not passed R2 at t1, Bob will present R4 at t4

and it has to play R2 at t5.

The goal of an agent is to win the game with minimum cost. The agent can always make

some additional moves if we assume that cost is associated with the number of steps in a

game rather than the number of arguments put forward in the game.

Cost=
∑Tf

i=Ts
k, where Tf and Ts are the ending time point and starting time

point respectively, and k is the cost of each step. Here we assumed that each

step takes the same duration irrespective of how many arguments are played.

5.4 Conclusion and future work

We have presented a dialogue game framework in defeasible logic. We have shown that

reconsideration of arguments are unnecessary and can be avoided.

A dialogue game does not allow for backtracking or reconsideration. At a given time,

however, a player may have more than one suitable argument to choose from. Although in

this chapter we have not presented any algorithm for strategies on how to win a particular

dialogue game, we have provided a foundation for development of such strategies. We have

introduced the cost function in a dialogue game and discussed how a strategy can be devel-

oped with the aim of maximizing the payoff of the game [47]. In addition, this framework
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could be extended to model the behavior of an agent ϕ in a dynamic environment ε. By rep-

resenting the environment as one of the parties, the agent ϕ is enabled, by putting forward

arguments, to reason on its environment in both reactive and proactive way. This would

allow for a natural characterization of the environment as the uncertainty in the environment

would be modeled as the private knowledge of ε. This protocol is extended to an asymmetric

protocol in the next chapter.



6
An asymmetric protocol for dialogue games

6.1 Introduction

Adversarial situations arise as agents in pursuit of their goals interact with other agents

pursuing goals of a conflicting nature. In a setting where issues need to be resolved, the

agent interaction could be modeled as an adversarial argumentation game. Argumentation

games are defeasible, meaning that an argument put forward by one of the agents in support

of a conclusion could be defeated by contrary evidence and arguments put forward by the

other agent. Thus, the agents resolve the dispute by putting forward the arguments that will

enable the best outcome for their case. Using a symmetrical protocol an argumentation game

between homogeneous (equally strong) parties could be modeled. However, as in many real-

life settings, disputes also arise in agent system where the claims of the agents involved in the

interaction (e.g. regarding distribution of a scarce resource) are of unequal importance to the

43
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overall goal of the agent system, and thus need to be handled accordingly. In addition, as in

many real-life situations the evidence presented by the parties of a dispute are inconclusive

and the accompanying arguments incoherent. Thus, a majority of the disputes has to be

resolved by higher-level principles guiding the interaction. One important principle is referred

to as the burden of proof, cf. e.g. [46].

To accommodate a correct outcome for argumentation games in heterogeneous agent

systems, we present an asymmetric protocol for adversarial argumentation games.

The chapter is organized as follows. In Section 6.2 we present argumentation games and

their setup. We discuss the formalization of argumentation games using defeasible logic as

presented in [49] in Section 6.3. Section 6.4 presents the asymmetrical protocol for argu-

mentation games. We use a criminal litigation setting to illustrate and discuss some of the

benefits of the model.

6.2 Argumentation games

Consider an adversarial argumentation (dialogue) game as an interaction between two par-

ties, the proponent and the opponent. The two parties debate a topic. Each equipped with a

set of arguments, the parties take turns in putting forward a subset of these arguments, i.e.

move, with the sole purpose of justifying their claim. The game is governed by a protocol

for admissible moves and the winning conditions. For the proponent, a basic protocol for

an argumentation game would be that the arguments of the move attack the previous move

of the adversary, and that the main claim follows from the arguments assessed as currently

valid. For the opponent, an admissible move has to attack the previous move of the adver-

sary, and the main claim is not derivable. Even though more complex winning criteria could

be devised, by a basic protocol, a player wins the argumentation game when the other party

is out of admissible moves.
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6.3 Dialogue games in defeasible logic - a symmetric

protocol

In Thakur et al. [49] we presented a model for an argumentation game in Defeasible Logic.

The model provided is of a basic symmetric protocol for an adversarial dispute. We parse

the dialogue into defeasible rules utilizing the time of the dialogue as the time of the rule.

In order to resolve the dispute, the agents take turns in putting forward arguments from a

private knowledge base, i.e. a finite set of (defeasible) arguments in support of their claim.

At each time step, an agent is allowed to put forward any of its arguments (rules) that has

precedence over any contradictory defeasible rule of the previous steps.

In this symmetric protocol we assume that if at time t2 we have a valid rule w ∈ (Rt2
sd)

which contradicts a defeasible rule s ∈ (Rt1
d ) of time t1 and t2 > t1 then the strength of w is

greater than s. a@t denotes the literal a being put forward or upgraded at time t:

w > s if +∂(w > s)

+∂(w > s)@t iff (w, s) ∈ (>) or

w ∈ Rt′ [P ], s ∈ Rt[¬P ] where t′ < t .

A common public knowledge base holds the common knowledge, which is a theory in defeasi-

ble logic. The sets of agreed common knowledge construct the theories T1, T2, . . . , Tn respec-

tively as the undefeated defeasible rules from the previously adjacent step are strengthened

into strict rules and the defeated defeasible rules are removed. Thus, if P is the conclusion

of a defeasible rule of the adjacent previous step ti−1, regardless of its origin, the agreed

common knowledge is created by strengthening the status of rules from defeasible to strict

in the adjacent next step ti+1 if:

∃r ∈ Rt′
d [P ] t′ < t ∀t′′ : t′ < t′′ < t Rt′′

sd[¬P ] = ∅ and

∀a ∈ A(r) : +∆a@t.

The proof procedures of the defeasible logic are applied to the critical literal at each time

step, thus determining the burden of proof and the outcome of the argumentation game.

The first theory T1 = ({}, R1
d, >) is created from the arguments (ARG1) presented by the
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first player, and the second theory T2 = ({}, R2
d, >) is created through modifications of T1

by the arguments (ARG2) presented by player 2. The transition rules from the first theory

to the second theory were devised as follows:

1. If r ∈ R1
d and ∀s ∈ ARG2, ¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R2

d.

2. By the assumption that all rules of (ARG2) are valid, and by the above defined prece-

dence relations all valid arguments are stronger than any contradictory rules of the

previous step, we add all rules of (ARG2) to T2 as defeasible rules.

At time 3, theory T3 = (R3
s, R

3
d, >) is created through modification of T2 by arguments

(ARG3) put forward by the first player. The rules for transition from T2 to T3 are:

1. If r ∈ R1
d and ∀s ∈ ARG2,¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R3

s. All unchal-

lenged rules presented at time 1 are upgraded to strict rules at time 3.

2. If r ∈ R2
d and ∀s ∈ ARG2,¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R3

d. All unchal-

lenged defeasible rules of time 2 are added to T3 as defeasible rules at time 3.

3. By the assumption that all rules of (ARG3) are valid, and by the above defined prece-

dence relations all valid arguments are stronger than any contradictory rules of the

previous step, we add all rules of (ARG3) to T3 as defeasible rules.

The winning criteria for a basic game are devised as an agent to be winning if the claim q

is definitely proven +∆q at any time step. If an agent at any step of the game proves +∂A,

the burden of production as well as persuasion of −∂A, or −∆A or +∆¬A or +∂¬A are

placed on the other party.

Using a symmetric protocol, a dispute between equally strong parties could be modeled

as an argumentation game and resolved accordingly. However, in many situations ethical,

moral or other reasons (cf. e.g. criminal litigation 1) advocate for special concerns to be

taken on behalf of one of the parties. To accommodate such settings, asymmetric protocols

are required.

1“Homo praesumitur bonus donec probetur malus”lat: Innocent until proven guilty. The adop-

tion of this presumption of innocence in many national statutes results in that the defendant of a

criminal litigation only is required to, at most, produce an exception to the accusation.
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6.4 An asymmetric protocol

Here we present an asymmetric model for adversarial argumentation games in defeasible

logic between two parties, the prosecutor and the defendant. As in the symmetric protocol,

we parse the dialogue into defeasible rules utilizing the time of the dialogue as the time of

the rule. Each agent has at its disposition a private knowledge base consisting of a finite

set of defeasible arguments in support of their claim (the critical literal). Initiated by the

prosecutor, the parties take turns in presenting their arguments. At each time step the

proof procedures are applied to the critical literal. The outcome of an argumentation game

is determined by the final stage of the game. For common sense reasons, as an argument

put forward cannot be revoked from impacting the argumentation, we do not allow for

backtracking.

The winning criteria for a basic game are devised as an agent to be winning if the claim q

is definitely proven +∆q at any time step. However, analogously to the burden of persuasion,

which imposes a requirement to provide a justified (i.e. strongly defeating) argument for the

issue on which the burden rests (based on rebutting defeat)[46], we require of the prosecutor

a strong defeat of any argument (including the critical literal) presented by the defendant.

Thus, if the prosecutor at any step of the game proves +∂A, the prosecutor still holds the

burden to produce proof of +∆A in order to win. In contrast, for the defendant only a

burden of production of an exception +∂¬A, (being subsumed by −∂A, −∆A or +∆¬A) is

imposed. If the defendant at any step of the game proves the exception +∂¬A, the burden

of persuasion placed on the prosecutor necessitates the proof of +∆A (including −∂¬A) in

order for the prosecutor to win.

In the symmetric protocol, regardless of its origin, time brings strengthening of un-

defeated rules from defeasible to strict. Here we require that the strengthening of rules

originating from the prosecutor only occurs when the rule could be derived from arguments

already put forward by the defendant. In other cases, undefeated rules from the previously

adjacent step presented by the prosecutor remain as defeasible rules in the common knowl-

edge base. Defeated rules are removed at each step. As we do not allow the prosecutor to

repeat arguments and the arguments put forward have to strongly defeat any arguments put
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forward by the defendant, the game will terminate.

In the symmetric protocol at each step any agent whose turn it is to move can present an

argument if its strength is stronger than contradictory defeasible rules of the previous steps.

In our asymmetrical distribution of the burden of proof, the defendant is allowed to present

an argument that is merely weakly defeating the argument of the prosecutor of the previous

steps. As a consequence, the defendant could remain with the same argument to fulfill his

burden of production of an assumption +∂¬A as response to +∂A.

The strength of an argument is determined by either previously known superiority re-

lationships or validity of that rule. Adhering to the above presented syntax, we write

yi ∈ R
tj
x |x ∈ (d,s,sd). Here y is a rule identifier with the subscripts i ∈ {p, d} where p

means that the origin of the rule is the prosecutor and d means that the origin of the rule

is the defendant. In the following, unless needed, the indexing is left out for readability

reasons. Moreover, we write a@tj to denote the literal a being put forward or upgraded at

time t, where t = (t
′
, t
′′
, . . . , tn):

If ∀r ∈ Rti
s [q] and ∀s ∈ Rti

d [¬q], then r >ti s.

We consider that the rule strength of a strict rule is greater than the rule strength of a

defeasible rule:

wd > sp if +∂(wd > sp)

+∂(wd > sp)@t iff (wd, sp) ∈ (>) or sp ∈ Rt′ [P ] and wd ∈ Rt′′ [¬P ], where

t′ < t′′ < t.

For defeasible rules presented by the defendant we simply assume that if at time t2 we have

a valid rule wd ∈ Rt2 which contradicts a defeasible rule sp ∈ Rt1 of time t1 and t2 > t1

then the strength of wd is greater than sp. This fits well with the burden of persuasion being

placed on the prosecutor. We utilize defeasible logic to determine the strength of a new rule

presented by the players.

sp > wd if +∂(sp > wd)
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+∂(sp > wd)@t iff sp > wd ∈ (>) or wd ∈ Rt′ [¬P ] and sp ∈ Rt′′ [P ] and ∀a ∈
A(s) : +∆a@t, where t′ < t′′ < t

else

wd > sp if +∂(wd > sp)

+∂(wd > sp)@t iff wd > sp ∈ (>) or wd ∈ Rt′ [¬P ] and sp ∈ Rt′′ [P ] and ¬∀a ∈
A(s) : +∆a@t, where t′ < t′′ < t.

As the prosecutor holds the burden of persuasion, we assume that unless the rule priority is

set, that only if at time t2 we have a valid rule sp ∈ Rt2 which contradicts a defeasible rule

wd ∈ Rt1 of time t1 and t2 > t1 and the rule presented by the prosecutor strongly defeats the

rule of the defendant then the strength of the argument sp of the prosecutor is greater than

the argument of the defendant wd. In all other situations the opposite goes, thus rendering

the strength of the argument sp of the prosecutor weaker than the argument of the defendant

wd.

In this asymmetric protocol the criteria for strengthening the rule strength of a defeasible

rule to a strict rule are devised as follows:

∃r ∈ Rt′
d [P ] t′ < t ∀t′′ : t′ < t′′ < t Rt′′

sd[¬P ] = ∅ and ∀a ∈ A(r) : +∆a@t.

If P is the conclusion of a defeasible rule r ∈ Rt′
d of the adjacent previous step t′ and the rule

was presented by the defendant then we can upgrade the rule status from defeasible to strict

in the next time step t if no counterarguments are presented by the prosecutor at time t′′.

Here, we write a@tj to denote the literal a being put forward or upgraded at time t, where

t = (tOdd′ , tEven′ , . . . , tOddn
, tEvenn

):

∃r ∈ RtOdd′′

d [P ] tOdd′′ < t ∀tEven′′ : tEven′′ < tOdd′′ < t RtEven′′

sd [¬P ] = ∅ and

∀a ∈ A(r) : +∆a@t and

1) ∃r ∈ RtEven′′

ds [P ] tEven′′ < t ∀tEven′′ : tOdd′′ < tEven′′ < t and ∀a ∈ A(r) : +∆a@t

or

2) +∂[P ]@tfromRtEven′′

ds .
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However, if P is the conclusion of a defeasible rule r ∈ RtOdd′′

d of the adjacent previous step

tOdd′′ and the rule was presented by the prosecutor then we can upgrade the rule status from

defeasible to strict in the next step only in the case of no counter arguments being presented

by the defendant at the adjacently following time tEven′′ and the defeasible (or strict) rule

r has been put forward by the defendant or the conclusion P follows defeasibly from the

defeasible or strict rules RtEven′′

ds presented by the defendant at the adjacently following time

tEven′′ .

An argumentation game is initiated at time 1 by the prosecutor agent putting forward

arguments (ARG1) from its private knowledge into the common knowledge base to prove its

claim (critical literal) A. As the parties take turns in presenting their arguments, at time 2

the defendant agent responds to the accusations. We allow arguments in the form of valid

defeasible rules being as strong or stronger than at least some of the rules of theory T1.

The common sets of argument construct the theories T1, T2, T3, . . . , Tn respectively where

the subscripts indicate the time at which the common sets of argument are constructed. As

all arguments in the private knowledge base of the agents are defeasible, in the first two

theories the common set of arguments consists only of defeasible rules from both time 1 and

time 2, according to the following transition rules:

Let the first theory T1 = ({}, R1
d, >) be created from arguments (ARG1), the operative plea

of prosecutor, and the second theory T2 = ({}, R2
d, >) be created through modifications of

T1 by arguments (ARG2) from the defendant. Now the transition rules from the first theory

T1 to the second theory T2 are as follows:

1. If r ∈ R1
d and ∀s ∈ ARG2, ¬C(s) 6= C(r) ∧¬C(s) /∈ A(r), then r ∈ R2

d.

2. All rules of (ARG2) are added to T2 as defeasible rules, under the assumption of (ARG2)

being valid and that, by the above defined precedence relations, any valid argument

from the defendant is stronger than its contradictory argument (from the prosecutor)

of the adjacent previous step. As all unchallenged rules of the prosecutor are added to

T2 as defeasible rules T2 now consists of all unchallenged rules of the prosecutor and

all arguments (ARG2) of the defendant.

At time 3, theory T3 is created through modification of T2 by arguments (ARG3) of the



6.4 An asymmetric protocol 51

prosecutor. Accounting for the heterogeneity of the parties we capture the asymmetrical

burden of proof by the following rules for transition from theories T2 to T3:

1. If r ∈ R1
d and ∀s ∈ ARG2,¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), and 1) r ∈ R2

d or 2)

R2
d ` C(r), then r ∈ R3

s.

2. If r ∈ R1
d and ∀s ∈ ARG2, ¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R3

d. Here we

should note that, in contrast to the symmetric protocol, even though the defendant

has not actively challenged these arguments and the prosecutor will not oppose its

previous argument by the rules of the game, we find it to be a too strong presumption

to strengthen the rule status of these rules to strict rules. Thus, unless the argument is

acknowledged by the defendant (see transition rule 1.), all unchallenged rules of time

1 of the prosecutor remain as defeasible rules at time 3.

3. If r ∈ R2
d and ∀s ∈ ARG3,¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R3

d. All un-

challenged defeasible rules of time 2 (originating from the defendant) are added as

defeasible rules at time 3.

4. If r ∈ R2
d and ∀s ∈ ARG3,¬C(s) = C(r) ∧ ¬C(s) /∈ A(r), AND r ≥ s then r ∈ R3

d.

For removal it is required that all rules of the defendant have to be strongly defeated

by the prosecutor. Thus, the defeasible rules of time 2 (originating from the defendant)

of equal or stronger strength are added as defeasible rules at time 3.

5. If r ∈ ARG3 and ∀s ∈ R2
d, ¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R3

d. All

unchallenged rules of (ARG3) are added to T3 as defeasible rules.

6. If r ∈ ARG3 and ∀s ∈ R2
d, ¬C(s) = C(r) ∧ ¬C(s) /∈ A(r) AND r > s , then r ∈ R3

d.

All rules of (ARG3) that are of higher priority, i.e. strongly defeat the arguments of the

defendant, are added to T3 as defeasible rules. Here due to the burden of production

on the prosecutor, all arguments added are required to either be unchallenged or to

strongly defeat all previous arguments of the defendant. This way, by putting forward

new arguments, the prosecutor could strengthen its claim.
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As a result, T3 consists of the unchallenged defeasible rules of T1 of the prosecutor, the

unchallenged defeasible rules and the rules T2 of the defendant that are challenged by (ARG3)

but found equally strong or stronger, and the unchallenged defeasible rules of the prosecutor

from (ARG3).

At time 4, theory T4 is created through modification of T3 by arguments (ARG4) of the

defendant. The transitions from T3 to T4 are devised as follows:

1. If r ∈ R2
d and ∀s ∈ ARG3,¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R4

s. The

defendant will not oppose its previous argument by the rules of the game. Thus, all

the unchallenged defeasible rules R2
d are upgraded as strict rules, i.e. facts, at time 4.

2. If r ∈ R3
d and ∀s ∈ ARG4,¬C(s) 6= C(r) ∧ ¬C(s) /∈ A(r), then r ∈ R4

d. All unchal-

lenged defeasible rules R3
d are added as defeasible rules at time 4. As already stated,

the defendant cannot challenge her own rules presented in R3
d.

3. All rules of (ARG4) are added to T4 as defeasible rules. In contrast to arguments e.g.

(ARG3) originating from the prosecutor, as (ARG4) originates from the defendant we

merely require that all rules of (ARG4) are valid and at least as strong (or stronger)

than any of its contradictory arguments presented by the prosecutor.

The following theories T5, T6, T7, . . . , Tn are constructed by the transition rules for the theories

T3, and T4 while acknowledging the alternating moves of the agents.

An example – Presumption of Innocence

The asymmetric model of argumentation game defeasible logic is illustrated by elaboration

on the example of [49]. Consider a particular argumentation game between the prosecutor

Alice and the defendant Bob. Alice is trying to convict Bob by proving A and Bob is claiming

¬A. At each step they maintain a current set of rules (CRt, where t is the time). Here a

rule consists of its name R′i (where R′i indicates that the rule belongs to the current set

CRt as opposed to the rules present in the private knowledge bases of the parties denoted

by Ri), its antecedent A(r), which is a finite set of literals, an arrow, its consequent C(r),
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which is a literal and @tx|x ∈ {1, 2, 3, . . . , n} denotes the time of the rule, which is updated

at each step. Alice initiates the game at time t1 by presenting her first move as :

R1 : ∅ ⇒ B R2 : B ⇒ A.

This will generate two defeasible rules as R′1(∅ ⇒ B)@t1, R′2(B ⇒ A)@t1. Thus at time

t1 CRt1=[R′1, R′2] and we have proof +∂A@t1. Now at the next time point, Bob gets his

chance to disprove A. At time t2, Bob presents the following argument:

R3 : ∅ ⇒ D R4 : D ⇒ ¬A.

This will generate two new defeasible rules as R′3(∅ ⇒ D)@t2 R′4(D ⇒ ¬A)@t2. Now, Bob

only attacks R′2 presented by Alice at the previous step by R′4 and R′2 is removed from

CRt2 . Note that as t2 > t1, the strength of R′4 is greater than R′2 according to the strength

determination rule for the defendant. At time t2, R′1 remains unchallenged but as this rule

is not utilized even as a premise in the reasoning of Bob it does not commit Bob to this rule,

(leaving Bob the possibility to dismiss this rule by contesting it at a later time or Alice to

present evidence to strengthen this rule by the strength determination rule). Thus, the rule

remains in CRt2 as R′1(∅ ⇒ B)@t2. This is in contrast to the symmetric protocol where R′1

when unchallenged is changed to a strict rule R′1(∅ → B)@t2 (a fact) regardless of its origin.

Note that we change the time stamp of the rule from t1 to t2 to indicate that it is a member

of CRt2 at time t2. Thus, CRt2 =[R′1, R′3, R′4]. The proof at time t2 is +∂¬A (which

implies that we also have −∆ A as the latter rule R′4 is stronger than R′2 in accordance to

the first strength determination rule.

Next at time t3, in order to defeat the arguments presented by Bob, Alice presents the

following arguments:

R5 : B ⇒ ¬D R6 : ∅ ⇒ E R7 : E ⇒ A.

So the translated defeasible rules are R′5(B ⇒ ¬D)@t3, R′6(∅ ⇒ E)@t3, R′7(E ⇒ A)@t3.

Now the CRt3 is [R′1, R′3, R′4, R′6] as the rule R′4 is stronger than R′7 and the rule R′3 is

stronger than R′5 according to the transition rule as neither the argument R′7 nor R′5 can

strongly defeat R′4 or R′3 respectively and thus they are removed. So the proof at this time
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point remains +∂¬A. If Alice cannot present any additional arguments strongly defeating

R′4 in the next step the rule R′4 is strengthened into a strict rule resulting in the proof of

+∆¬A. Thus, in contrast to the symmetric protocol example where Alice wins the game as

she was able to upgrade the defeasible rules supporting the proof of +∂A by use of the rule

priority assumption in 6.4, she would need the rule to be strongly defeated as, for example,

by addition of a rule R′i : E ⇒ ¬D to prevent the rule R′4 from being strengthened into a

strict rule at time t4. As this is not the case, Bob wins the game at time t4 and is acquitted

from the criminal charge of A.

Another Example - Beyond Reasonable Doubt

Consider a second argumentation game between the prosecutor Alice and the defendant

Bob. Alice is still trying to convict Bob by proving A and Bob is claiming ¬A. Again Alice

initiates the game at time t1 by presenting her first move as:

R1 : ∅ ⇒ B R2 : B ⇒ A.

This will generate two defeasible rules as R′1(∅ ⇒ B)@t1, R′2(B ⇒ A)@t1. Thus at time

t1 CRt1=[R′1, R′2] and we have proof +∂A@t1. Now at the next time point, Bob gets his

chance to disprove A. At time t2(t2 > t1), Bob presents the following argument:

R3 : E ⇒ D R4 : (B ∧D) ⇒ ¬A.

This will generate two new defeasible rules as R′3(E ⇒ D)@t2, R′4(B∧D ⇒ ¬A)@t2. Now,

Bob only attacks R′2 presented by Alice at the previous step by R′4 and R′2 is removed

from CR. As t2 > t1, the strength of R′4 is greater than R′2 according to the strength

determination rule for the defendant. Thus, CRt2 =[R′1, R′3, R′4]. The proof at time t2 is

−∂ A, which includes that we also have −∆ A as the latter rule R′4 is stronger than R′2.

Next at time t3, Alice presents the following arguments :

R5 : ¬E ⇒ ¬D R6 : ∅ ⇒ ¬E R7 : B ⇒ A.

The translated defeasible rules are R′5(¬E ⇒ ¬D)@t3, R′6(∅ ⇒ ¬E)@t3, R′7(B ⇒ A)@t3.

Now CRt3 =[R′1, R′4, R′5, R′6, R′7] as R′3 is strongly defeated by R′5 and R′6 and thus,
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it is removed. At time t3, R′1 remains unchallenged and as it is utilized as a premise in the

reasoning of Bob and thus commits Bob to this rule (which is justified as Bob could not be

allowed to rely on not actively presented inconsistencies), when presented by the prosecutor

Alice it is strengthened into a strict rule (i.e. a fact) as R′1(∅ → B)@t3. So the proof at this

time point is +∂A as the rule is stronger according to the transition rules. If Bob does not

present valid arguments in the next step Alice wins the game as from Bob’s argumentation

her claim is corroborated.

6.5 Conclusion

In this chapter defeasible logic is used to capture an asymmetric protocol for argumentation

games. We have shown that our model provides for a closer approximation of argumentation

games for heterogeneous agent settings. The agent characteristics or the agents’ relative

importance in fulfilling the overall goal of the system could be captured, while the agent is

allowed to argue its case in the best way it knows, for example choosing at what time any

subset of its arguments (i.e. private knowledge) be disclosed to its adversary.
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7
A new semantics for locutions

In this chapter we discuss our second research problem. We want to model semantics of

locution in terms of how efficient locutions are in conveying the right ‘meaning’ [3].

7.1 Introduction

Dialogue game protocols are developed as agent interaction protocols in many domains of

application as persuasion dialogue [43], information seeking dialogue [27], coalition formation

dialogue [24] and negotiation dialogue [48]. [33] has structured dialogue game protocols into

components as locutions, combination rules and termination rules. [34] has argued that as

different dialogue game protocols are developed there is a need to compare these protocols

in order to choose an appropriate protocol for a particular agent interaction scenario. [36]

provides a functional comparison of dialogue game protocols based on the components of

57
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protocols.

Dialogue game protocols are developed in isolation from agent design. So a functional

comparison between protocols only provides functional differences between components of

protocols but not with respect to agent’s architecture. While components of a dialogue game

protocol provide a structured approach to develop a protocol, semantics of these components

imposes some restriction on agents to communicate with other agents. Agent’s interactions

are more fruitful if the agents have more information about each other. So instead of just

reacting to a set of rules, if an agent knows another agent’s mental state that produces the

set of rule, it can produce a better response. As agents will be interacting using a dialogue

game protocol, to convey a state of mind a speaker agent has to choose from a given set of

components that best describes the agent’s mental state. Similarly a receiver agent has to

relay on the semantics of a component of a protocol to interpret the speaker’s mental state.

In this chapter we will model the difference between what an agent wants to convey to the

other agent and what it can communicate using a dialogue game protocol.

The chapter is organized as follows: in section 7.2 we summarize the protocol given in

[49] and [19]. In Section 7.3 we present a tree representation of a dialogue game which will be

used to describe components of the protocol. In Section 7.4 we model agent’s knowledgebase.

Components of the protocols are developed according to component classification of [33]. In

Section 7.5 we present our intuition for components of a dialogue game protocol. In Sections

7.5.1 and 7.5.2 we describe semantics of locutions and combination rules.

7.2 Dialogue game protocol

In this section we summarize the dialogue game protocol described in [49] 1. Let the par-

ticipating agents be Agent1 and Agent2. Each agent is equipped with a knowledge base. A

knowledge base is a theory in defeasible logic (for details see [22]). Let the knowledge base

for each agent be KB1 and KB2 where, KBi = {F, Rs, Rd, >}|i ∈ {1, 2}. F is a set of facts,

Rs is a set of strict rules, Rd is a set of defeasible rules with superiority relation >. For

1In this section we repeat the dialogue game protocol presented in Section 5. The representations used

in this section in describing the protocol will be used in the rest of the chapter.



7.2 Dialogue game protocol 59

simplicity, we assume that the agents are arguing about a single literal lC(will be referred to

as the critical literal). The semantics of the protocol2 is as follows:

1. The agents present their arguments and they build a common theory, represented as

Thcom
i (this theory holds all rules presented by both agents in their turns except the

rejected rules). Here i represents the step of the game when Thcom
i is created.

2. All arguments presented by an agent are initially treated as defeasible rules. If in the

next step the other party fails to provide the valid counter arguments, these defeasible

rules will be upgraded to strict rules.

3. The arguments in support of a critical literal ¬A presented by a party at any step

must attack (at least) the conclusion in support of the critical literal A put forward

by the other party in the previous step. Moreover, in order to prevent a strengthening

of the defeasible rules in support of A in the set of common arguments and to remove

from the set of common arguments all defeasible rules which have as conclusion A,

party 1 must present at least one new argument with its own critical literal ¬A as its

conclusion.

4. An agent cannot attack its own arguments. In our dialogue game framework it is not

admissible for an agent to contradict itself by putting forward rules with a conclusion

that contradicts a rule previously presented by the agent.

5. A particular dialogue game is won by an agent when the other party at his turn cannot

make an admissible move.

6. A argument r is stronger than an argument s, conflicting with r and played in the

previous time-step, if r is not attacked in successive steps.

7. A valid argument will remove all contradictory arguments from the common set of

knowledge.

8. At any step of the game, we use defeasible rules to process the proof for lC .

2The full semantics in Chapter 5.
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9. The game ends when a party runs out of moves.

7.3 Dialogue tree

As mentioned in the previous protocol, a common theory is maintained in the dialogue game

and defeasible logic is applied to check the proof of the critical literal with respect to the

common theory. In this section we represent the process of construction of the common

theory as a tree.

Let the dialogue tree be represented as < R,→S|O> where R is a set of rules (R

contains both strict and defeasible rules) and each rule represents a node. →S|O⊂
R × R is a set of relations among the nodes. The direction of the arrow shows

the dependency between nodes. For example R1 →S R2 means R1 supports R2.

R1 →O R2 means R1 opposes R2, where either R1 and R2 are defeasible rules

and R1 is stronger than R2 or if R2 is a strict rule then R1 undercuts R2. The

root of the tree is a node which has a rule with conclusion lC or ¬lC or it opposes

a node which contains a rule whose conclusion is lC .

Consider an example: At step 1 (start of a dialogue game), Agent1 presents the following

rules :

R1 : A ⇒ lC

R2 : B ⇒ A

R3 :⇒ B.

The corresponding dialogue tree is shown in Figure 7.1.

At step 2, Agent2 proposes the following rules

R4 : C ⇒ ¬lC

R5 :⇒ C

If R4 is stronger than R1 then the tree will be changed as shown in Figure 7.2. A relation

will be called a defeated relation if it is opposed by another relation. As shown in Figure 7.2

R2 →S R1 is defeated by R4 →O R1. A defeated relation will be drawn as a dashed arrow.
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Figure 7.1: Dialogue tree at step 1

Figure 7.2: Dialogue tree at step 2

Next we introduce the parent-child relationship between nodes. We define a parent

relation between two nodes as:

R2 is parent of R1 or Parent{R1, R2}, if

• there is relation from R1 to R2.

• there is a node with rule R3 and there are relations as Parent{R1, R3} and

Parent{R3, R2}.

We define a child relation as :

R1 is child of R2 or Child{R1, R2}, if

• there is relation from R1 to R2.
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• there is a node with rule R3 and there are relations as Child{R1, R3} and

Child{R3, R2}.

Now we introduce the concepts of active, dead and sleepy parts of a tree.

An active tree is one whose entire nodes are either not challenged or undefeated.

The maximal subset M of T such that all nodes are connected by a normal link

where :

1. There is node (N) whose conclusion is lC or there is a node (N) who has

relation N →O N
′
where conclusion of N

′
is lC .

2. For all other nodes (Ni|i ∈ {1 . . . k}) in M , there is a parent relation as

Parent{N,Ni}|∀i ∈ {1 . . . k}.

3. There is no node Ni in M , such that there is an oppose relation as n →O Ni

where n is a node outside M . This suggests that all rules in M are stronger

than contradictory rules in T .

A sleepy tree is a fragment of T which is not active. A node becomes a sleepy

tree when its parent node is defeated by the counter argument but the node itself

and its children remain undefeated. A subset S of T is a sleepy tree if :

1. There is no node in S which contains a rule with conclusion lC .

2. ∃s ∈ S such that ∀s′ ∈ S/s we have a parent relation as Parent{s, s′}. This

means s is a root node in S.

3. If n is a parent of s then there is a relation as n
′ →O n. If there is node n

′′

such that there are two relations Parent{n, n
′′} and Parent{n′′ , s} then n

′′

is also defeated. All immediate parent nodes are defeated.

4. @n ∈ T such that n →O s. The root of S remains undefeated or unchal-

lenged.

5. @n′′ ∈ T such that n
′′ →O s′′. Where s

′′ ∈ S and there is a relation

child{s′′ , s}. Every child node of s (also belonging to S) remains undefeated

or unchallenged.
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A part of a dialogue tree becomes dead when its root is defeated or some child

node is defeated. The maximal subset is D of T such that :

1. There is a node n in D, such that conclusion of n is lC or there is relation

n →O n
′

where n
′

is a rule with conclusion lC . This means the root is

defeated and it either contains the critical literal or directly opposes the

critical literal. OR

2. ∀ni ∈ {D/n}, such that there is a relation as Parent{n, ni}. n is the root

node. AND

3. There is a relation m →O nj for all rules nj ∈ D/n and m ∈ T . This means

a child node of n is defeated. AND

4. @k ∈ {D/nj} such that there is a relation as Parent{nj, k}. This means nj

is the lowest node in the tree D.

A dialogue game tree can be divided into active, dead and sleepy parts. As the game

progresses arguments and counter arguments are presented. This will expand and collapse

these partitions of a dialogue game tree. Next we will consider the transition between these

partitions.

Active to dead and sleepy tree: An active tree becomes a dead tree if it is attacked by

counter arguments and it may produce sleepy trees. Given an active tree M , if the

current player plays a set of rules R as R1 . . . Rm and D denotes the dead tree (initially

empty set) then :

1. ∀m ∈ M, ∃r ∈ R such that there is a relation r →O m then ∀m′ ∈ M :

Parent{m′
,m}, m

′
and m is added to D. A defeated node and its parent nodes

becomes a dead tree.

2. ∀r′ ∈ M where ∃Child{r′ , r} becomes a sleepy tree if there is no rule m
′ ∈ M

such that there is a relation m
′ → Or

′
.

3. R becomes the current active tree.
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Dead to active tree: Given a dead tree D and the current active tree M if the current player

(who owns the dead tree) presents a set of rules R as R1 . . . Rm then the transition is

as follows :

1. If ∃m ∈ M such that m →O d where d ∈ D and there is a current rule r ∈ R

such that r →O m.

2. ∀di ∈ D such that Parent{di, d} ,

(a) There is no rule mi in M such that mi →O Di or

(b) If there is a rule mi in M such that mi →O Di then there is a rule ri ∈ R

such that ri →O mi.

3. Upon satisfaction of the above conditions a dead node becomes an active tree and

a current active tree will have rules as

(a) All recovered rules and undefeated or recovered parent rules along with new

rule set R.

Sleepy tree to active tree: Given a dead tree D, current active tree M and current set of

proposed rules R, a sleepy tree S becomes part of an active tree if :

1. for a rule si ∈ S and di ∈ D if Parent{di, si} and di is recovered by R (as in the

previous transition)

2. for a rule si ∈ S and ri ∈ R if there is relation si →S ri.

We can represent the above transitions in Figure 7.3.

An instance of a game G is represented by Ii =< AT,DT, ST >, where i is the

current step, AT is the current active tree, DT is the dead tree(s), and ST are

the sleepy trees.

A history of a game G at step i is represented by a set of instances of the game

from the start of the game. History is represented as Hi =< I1 . . . Ii−1 >.
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Figure 7.3: Transition of dialogue trees

7.4 Agent’s knowledge-base

An agent’s knowledge base is represented as a graph G =< N,E > with N nodes

and E edges where E ⊂ N ×N .

Each node represents a rule. An edge represents a ‘support’ or ‘oppose’ relation between two

nodes. A node can participate in more than one edge. We represent an attack relation as

EO{n1, n2} and support relation as ES{n1, n2}. The agent’s knowledge base will have both

support and oppose relations for a node. A path in a graph representing the knowledge base

of an agent is defined as follows :

A path in a graph G will be represented as P{n1, n2} = {E1(n1, n
′
1), E

′
1(n

′
1, n

′
2), . . .

E2(n
′
k, n2)}.

Let V (P ) represent a set of nodes in the path P and E(P ) represent a set of edges in the

path P . Given a path P{n1, n2}, n1 will be called the start node and n2 will be called the

end node. A set of paths originating from a node n1 is represented as P{n1, ∗}. Given two

paths p and p
′
, p ∩ p

′
will represent the common path p

′′
.

A path p is a subpath of a path P if (1) V (p) ⊂ V (P ) (2) E(p) ⊂ E(P ).

Given a graph G =< N, E > of a knowledge-base, a line of argument (LA) for

an node n:
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• Pn is a path P which has start end as n.

• There must not be any oppose edges or even number of oppose edges.

Given a line of argument LA(n), if ni and ni+1 share the first occurance of an oppose edge

then :

• All nodes nj with Parent{nj, ni} relation with ni and ni will be the rules presented

by the agent and

• Rules from ni+1 to next oppose the relation will be presented by the opponent.

Note that a node can have multiple lines of arguments.

Given a graph G =< N,E > for a knowledge base, a line of attack (LATTK) for

a node n is a path, with the start node as n and the immediate next node of n

shares an oppose relation with n and all other nodes share a support relation.

Note that a node can have multiple attack nodes. A line of argument may be protected

by a number of lines of attacks. A line of argument becomes dead when there is no available

line of attack to protect it. An agent starts a dialogue game (with topic lC) with a finite set

of lines of arguments for lC and a finite number of lines of attack.

A defendant who is trying to prove lC can start a new active tree if the current dead

tree belongs to it and the defendant can not recover it. A challenger, who is trying to prove

that it is not lC can have new attacks on the same active tree (belonging to the defendant).

A similar approach is followed in [25], [51]. [19] also proposes a similar approach where the

responsibility of players is different. So the semantics of the dialogue game protocol will

impose some rules such as: (1) agents can not repeat an argument (2) an agent can not

contradict what it has said before (3) the defendant can use multiple lines of argument (4)

the challenger can use multiple lines of attack on the same line of argument. These rules will

cause the removal of some nodes from the agent’s knowledge-base as they are already played

or can not be played. To capture the current available rules to an agent for a dialogue game

we introduce mental state of an agent as follows :
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Figure 7.4: Knowledge-base

Given a dialogue game step i, an agent’s (Agj) mental state is represented by

MSi
Agj

=<
∑

LAi,
∑

LATTK i >.

∑
LAi represents the current line of argument (if not dead) and available line of argument

and
∑

LATTK i represents available lines of attack. Consider an example. Let an agent’s

knowledge-base have the following rules.

R1 : B ⇒ A; R2 : C ⇒ B; R3 : D ⇒ C

R4 : E ⇒ ¬D; R5 : F ⇒ ¬E; R6 : G ⇒ ¬C

Agent’s knowledge-base is illustrated in Figure 7.4. Here the line of argument is the path

LA1 =< R1, R2, R3 > where conclusion of R1 is lC . LA1 is protected by two lines of attack

as LATTK1 =< R2, R6, R7 > and LATTK2 =< R3, R4, R5 >. Note that lines of attack

R2, R6 and R3, R4 are supposed to be played by the challenger.

The dynamics of mental states of agents and game instance is illustrated in figure 7.5

and 7.6. In Figure 7.5, the game instance is < AT 1 = {R1, R2, R3}, DT = ∅, ST = ∅ >.

Figure 7.6 shows the game instance at step 3 after the challenger argues with R4 and the

defendant presents counter argument R7. As agents use line of attacks, corresponding rules

are removed from the agent’s knowledge base.
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Figure 7.5: Game at step1

7.5 Components of a dialogue game protocol

One of our goals in this chapter is to show the dialogue game protocol’s limitation in terms of

what an agent wants to convey and what it can communicate using a semantics of a protocol.

We will use communication theory to model this limitation of dialogue game protocol.

[3] had formalized intentionality in communication. If a speaker S utters χ to ‘convey’ p

to receiver R, then S must intend the following:

1. S’s action χ will produce a certain response a in a certain receiver.

2. R to recognize S’s intention.

3. R’s recognition of S’s intention affects R’s reasoning to produce a.

In [3] the objective was to model unconventional methods of communication, so intention

2 and 3 were necessary. [2] has shown that A’s intention 2 (and hence 3) is not necessary as

this intention can be just a logical consequence if the agents communicate using a language

(which may be ambiguous). We will follow the communication theory developed in [2] to

model this ambiguity. Let A1 and A2 be two agents and they share a meaning function

M(χ), where χ is the content of the utterance. Let A want to convey p to B by uttering χ.

The communication is as follows :
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Figure 7.6: Game at step 3

1. A1 intends to convey p

2. A1 utters χ to A2.

3. 2 becomes the common knowledge.

4. A2 intends to interpret χ.

5. 4 becomes common knowledge.

6. B interprets χ.

7. P ∈ M(χ).

8. 7 is common knowledge of both agents.

Success of communication is modeled using game theory. If there is a Nash-Pareto equi-

librium (unique solution) then A successfully communicates with B. In this chapter we are

only interested in showing ambiguity in a dialogue game. A language becomes ambiguous

when it contains a meaning function which can produce several meaning for a certain utter-

ance (including the correct one). Dialogue game protocols will also have the same ambiguity.

As an agent has a choice of locutions to utter in response to a particular locution it creates
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Figure 7.7: Ambiguity in dialogue game

ambiguity. A ‘meaning’ function in a dialogue game protocol will correspond to a function

that maps a locution and content of that locution to a set of agent’s (speaker) ‘intentions’.

A speaker’s intention is a certain mental state the speaker wants to create in hearer’s mind

so that the hearer can produce a certain response (another locution and content of the lo-

cution). But as the meaning function can produce several speaker intentions, the receiver

can interpret a locution in different ways which will create the ambiguity. As we will see,

semantics of a dialogue game protocol will be responsible for the meaning function and hence

for this ambiguity.

We can visualize this ambiguity in Figure 7.7. Let there be two agents A (speaker) and B

(hearer). Two initial nodes MS1 and MS2 represent two mental states of A. If A is in mental

state MS1 then it wants to convey p to B and if it is in MS2 then it wants to convey p1 to

agent. Here p and p1 correspond to mental states MSp and MSp1 in B’s mind respectively.

A utters the same locution Li for both situations. A knows that it is in mental state MS1

and want to convey p. But B does not. Upon uttering Li, A reaches either of two states t

or t1. t and t1 are situations when there is a new state in the game and a new mental state

of A because of uttering Li. Now B’s interpretation can produce p or p1 for both t and t1.
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We can interpret the above situation in Figure 7.5 and 7.6 as follows: Agent1’s mental

states are MS1 = {R1, R2, R3, R5, R6} and MS2 = {R1, R2, R3, R4, R7}. If Agent1 is in

MS1 then it wants to bring a mental state P1 = MS3 = {R7, R8}{R3, R5, R6, R9}(after

step 3) in Agent2 and if it is in MS2 then it wants to bring a mental state P2 = MS4 =

{R6, R9}{R2, R4, R7, R8} in Agent2. Assume that Agent1 is in MS1 and wants to convey

P1. Agent1 utters Li{R1, R2, R3}, and as Agent2 does not know Agent1’s initial mental

state it can not distinguish between t and t1. Here t={R2, R4, R7} and t1={R3, R5, R6}.
So in both situations Agent2 can choose any response between MS3 and MS4.

Next we will model the semantics of locutions and combination rules. Semantics of lo-

cution is developed in [35], which uses semantics of FIPA ACL ([4]). It uses feasibility

precondition (precondition) and rational effect (post condition) to model semantics of locu-

tion. For our purpose in this chapter we want to develop semantics on the basis of how a

protocol can convey the mental state of agents. We will follow the component classification

of dialogue game by [33]. We will only discuss the semantics of locution as the design of the

other components will not be changed.

7.5.1 Locutions

Locutions are legal dialogue moves such as Assert, Propose, Reject and Justify. Semantics

of locution is as follows:

Let the current step of a dialogue game be i + 1. The mental states of two

agents are MSi
Ag1

and MSi
Ag2

, the current game instance Gi and it is Ag1’s turn

to produce an argument. Ag1 utters Lk(R1 . . . Rm)(a locution and content of

the locution) to change the current game instance to Gi+1
Lk

so that it can change

Ag2’s certain mental state to MSi+1
Ag2

so that Ag2 will make a certain move as

Lk1(R1 . . . Rn) and the game instance will be changed to Gi+2.

The above definition of locution can be understood using Figure 7.9. Agent A is the

speaker (first) and B is the hearer. A can be in two mental states namely MS1 and MS2.

In MS1, A wants to convey p1(corresponds to MS3 in B) and in MS2 A wants to convey

p2 (corresponds to MS4 in B). A knows that it is in MS1 and wants to convey p1. But B
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does not know that, so A’s utterance L1 can correspond to both MS1 and MS2. As A utters

L1 it creates two states T1 and T2, corresponding to A’s mental state after uttering L1. B

can not differentiate between these two state and chooses any one state. So B reaches either

state MS3 or MS4. This new mental state corresponds to B’s interpretation of L1 to p1 or

p2. Now at two mental states T1 and T2, B can have a choice of locutions (this choice will

be restricted by combination rules). Let B have a choice namely L2 or L3. Let L2 be the

locution that follows A’s intention. By uttering L2 or L3, B changes the game state to GS1

and GS2. So GS1 is the game state when the locution uttered by A is correctly interpreted

by B. Here we have the following ambiguities which will prevent a locution from functioning

properly :

• The first ambiguity can arise from the choice between T1 and T2. This means the

hearer is uncertain about the speaker’s mental state as same the locution can corre-

spond to multiple mental states.

• Due to the first ambiguity, B can not decide whether to choose P1 or P2, so this is

the second ambiguity and creates two mental states namely MS3 and MS4. So, unable

to distinguish between the speaker’s mental states, the hearer will also be unable to

distinguish the mental state the speaker wants to bring in the hearer’s mind.

• The third ambiguity is due to availability of locutions. There might be several choices

of locution to an agent at a step and each locution will create a new game state (which

may not be the game state the speaker intends).

Now we can use the structure of the dialogue game tree and agent’s knowledge base

to describe a locution. Let, at step i+1 the game instance be Gi =< AT i, DT i, ST i >.

Ag1’s mental state is MSi
Ag1

=< LAi, LATTK > and Ag2’s mental state is MSi
Ag2

=<

LAi, LATTK >. Let it be Ag1’s turn to produce an argument. So the current active tree

will not belong to Ag1 and Ag1 will try to revive a dead tree (here we assume that Ag1 is

the defendant so it owns a line of argument, if it is the challenger then it will try to attack

a line of argument hence it will try to convert an active tree to a dead tree). Now, Ag1 can

only revive a tree if it has any available attack or it will start a new line of argument (if any

left). This process is described as follows:
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1. Let V {AT i} be nodes of a current active tree. If there is a node v in V {AT i} such

that it is a root node of Ag1’s line of attack (let it be LATTKk), then Ag1 will utter

Lj{LATTKk}.

2. By uttering Lj{LATTKk
1} Ag1 will change the game state to Gi+1 and it will try to

convey to Ag2 about Ag1’s intended mental state MSi+1
Ag2

.

3. MSi+1
Ag2

will produce Lj1{LATTKk
2} and the game state will change to Gi+2 and Ag1’s

mental state will change to MSi+2
Ag2

.

4. If the attempt to convey Ag2 about MSi+1
Ag2

is successful then following will be true :

• The reduced path in Ag1’s knowledge base will be added as expansion of game

state tree.

• The reduced path in transformation from MSi+1
Ag2

to MSi+2
Ag2

will be the extension

of the game state tree.

So we can say that if communication was successful then the game state tree will take the

shape of Ag1’s initial mental tree. Again we can go back to figure 7.5 and 7.6 for illustration.

Let Agent1 be in mental state MS1 =< R1, R2, R3, R4, R7 > and by uttering L{R1, R2, R3}
it means to bring a mental state MS3 =< R7, R8 >. As we can see from these figures Agent2

correctly interprets Agent1’s locution as the final game state is the same as the initial mental

state of Agent1.

7.5.2 Combination rules

Combination rules decide which locutions are applicable in a particular stage of the game.

Applicable locutions are determined by the history of the game. Let the history of the game

at step i be a collection of states as H i = S1 . . . Si−1 and the set of locutions in a dialogue

game protocol is L. So the combination rules can be represented as :

H i × L → L
′|L′ ⊂ L

The set of locution L
′
is applicable locutions at stage i + 1 as illustrated in Figure 7.10.



74 A new semantics for locutions

Figure 7.8: Locutions: Given a dialogue state different locutions can produce different states

7.6 Conclusion and future work

In this chapter we provide a new semantics for locutions of a dialogue game. We have

shown how misinterpretation can happen in dialogues. Our next research goal is to find

an optimum combination of locutions that will reduce the chance of misinterpretation. In

a similar problem, [2] applied game theory and an unique solution to the game means an

optimum solution. So if there is one locution can represent the best response to a locution

then the dialogue game will be optimal.
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Figure 7.9: Locutions

Figure 7.10: Combination rules
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8
Future work

We have proposed two protocols for dialogue games. These protocols project the strategic

behaviour of agents as agents have to decide which arguments to attack in a given time

frame. Possible future works base a on these protocols are as follows :

1. Modeling logical properties as termination rules, complexity, fairness and completeness

of dialogue game protocols.

2. Comparing protocols on logical properties.

3. Open knowledge system: In our protocols agents enter the dialogue game with fixed

knowledge. But it is unrealistic to assume that an agent’s knowledge will not change

during the dialogue game. So dialogue game protocols can be modified to support an

open knowledge base.

77



78 Future work

We have proposed a new semantics for locutions. Possible future works based on this

new semantics of locution are as follows :

1. Given a set of locutions for a protocol we can identify unambiguous locutions. We can

use game theory to find out if there is a unique solution to the game.

2. Given a set of locutions for a protocol a particular set of locutions can be evolutionary

stable. We can use evolutionary game theory to find out the sets of locutions which

are evolutionary stable.

3. Compare protocols based on the new semantics: Comparison of protocols on this

semantics will reveal which protocol can convey the right meaning more efficiently.
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